Curved arrays for improved horizontal sizing in small pipe welds

Similar documents
PHASED ARRAYS FOR SMALL DIAMETER, THIN-WALLED PIPING INSPECTIONS

Improved Inspection of CRA-Clad Pipeline Girth Welds with the Use of Accessible Advanced Ultrasonic Phased-Array Technology

Pipeline Girth Weld Inspections using Ultrasonic Phased Arrays Michael Moles, Noël Dubé, Simon Labbé and Ed Ginzel

Easy Ultrasonic Phased Array Inspection of Corrosion - Resistant Alloys and Dissimilar Weld Materials

Phased Array UT Application For Boiler Tube Inspection in Manufacturing And In-Service Anandamurugan S 1, Siva Sankar Y 2

Optimized Semi-Flexible Matrix Array Probes for Large Rotor Shafts and DGS Sizing Diagram Simulation Tool

DESIGN & VALIDATION OF A SEMI-FLEXIBLE PAUT PROBE FOR THE MANUFACTURING INSPECTIONS OF LARGE FORGED ROTORS

Modelling Probe Wedge and Pipe Geometry as Critical Parameters in Pipe Girth Weld Ultrasonic Inspections Using Civa Simulation Software

Tom Marshall, Sonatest Ltd. Date: March 15, Typical Application. Introduction. Using the veo with the Phoenix Bracelet Scanner

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

Automated Ultrasonic Inspection for Pipeline Girth Welds

Flexible PCB-Based Eddy Current Array Probes for the Inspection of Turbine Components

Structural UT: Variables Affecting Attenuation and Review of the 2 db per Inch Model

Latest Developments for Pipeline Girth Welds using 3D Imaging Techniques. Novel Construction Meeting Jan van der Ent March 2016, Geneva

High-Resolution Corrosion Monitoring for Reliable Assessment of Infrastructure

Feasibility Study for ARL Inspection of Ceramic Plates Final Report - Revision: B

Phased Array&TOFD Probes

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

Phased Array Probes and Wedges

Welding Inspection Non-Destructive Testing Course Reference WIS 5

Phased Array Probes and Wedges

S. GURESH 4 JAN 2017 S. JOHNSON 4 JAN 2017

DETECTION OF CORROSION IN BOTTOM PLATES OF GAS AND OIL TANKS USING GUIDED ULTRASONIC WAVES AND ELECTROMAGNETIC ULTRASONIC (EMAT) TRANSDUCERS

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures

DACON INSPECTION SERVICES. Phased Array Ultrasonic Testing

Sonotron NDT 4, Pekeris str., Rabin Science Park, Rehovot, 76702, Israel. Portable Ultrasonic Phased Array Flaw Detector and Recorder

Imaging using Ultrasound - I

A Practical Application of Phased Array Inspection at High Temperature

Basic functions of the universal flaw detector GEKKO

American Petroleum Institute Task Group Line Pipe

Adaptive Ultrasound Technology for the Inspection of Variable Geometry Composite Material. Presenter Etienne Grondin Olympus NDT Canada, Quebec

Phased array Inspections. Probes and Wedges. Angle Beam Probes Immersion Probes Integrated Wedge Curved Array Probes Wedges B-EN

Developments in Ultrasonic Phased Array Inspection III

Fig.2: Scanner VistaScan for image plates

CRACK DETECTION AND DEFECT CLASSIFICATION USING THE LLT - TECHNIQUE. Wolfgang Gebhardt and Friedhelm Walte

The Application of TOFD Technique on the Large Pressure Vessel

MultiScan MS 5800 Series

Phased Array Inspection of Coarse Grain Welds (Austenitic, CRA, etc)

PAUT as Tool for Corrosion Damage Monitoring

The Battle of Carbon Steel

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD)

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

Long Range Ultrasonic Testing - Case Studies

Probability of Rejection - In conformance with DNV OS F101

Detecting Stress Corrosion Cracking with Eddy Current Array Technology Cracking

Sonotron NDT 4, Pekeris str., Rabin Science Park, Rehovot, 76702, Israel Phone:++972-(0) Fax:++972-(0)

A CONTRIBUTION TO QUANTIFYING THE SOURCES OF ERRORS IN PAUT

GUIDELINES FOR THE APPLICATION OF TIME-OF-FLIGHT DIFFRACTION (TOFD) AND PHASED ARRAY ULTRASONIC TESTING (PAUT) TECHNIQUES

Overview of Improvements in Work Practices and Instrumentation for CANDU Primary Heat Transport Feeders In-Service Inspections

PROPOSED CHANGES TO: APPENDIX IV - PHASED ARRAY E-SCAN AND S-SCAN MANUAL RASTER EXAMINATION TECHNIQUES

Nondestructive Evaluation Tools to Improve the Inspection, Fabrication and Repair of Bridges

ISONIC Superior Performance Portable Smart All-In-One Ultrasonic Flaw Detector and Recorder with A-, B-, CB-Scan, and TOFD Functionality

Novel Imaging Techniques for Defects Characterisation in Phased Array Inspection

New Developments in Automated Inspection for Corrosion under Insulation

Simulation of Ultrasonic Testing of Rail Wheel Face using Phased Array and DDF technique

AA&S Conference 2018 Eddy Current Array for Aircraft

Pipeline Technology Conference 2010

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

18th World Conference on Non-destructive Testing, April 2012, Durban, South Africa

Introduction To NDT. BY: Omid HEIDARY

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

NDI Techniques Supporting Steel Pipe Products

PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES

ENHANCEMENT OF SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT) BY ADVANCED SIGNAL PROCESSING

A Turnkey Weld Inspection Solution Combining PAUT & TOFD

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

New Multi-Technology In-Line Inspection Tool For The Quantitative Wall Thickness Measurement Of Gas Pipelines

Standard Guide for Evaluating Performance Characteristics of Phased-Array Ultrasonic Testing Instruments and Systems 1

TOFD Analysis Flaw Sizing and Characterization

Two aging problems were discovered in the mid 90`s: thinning and cracking.

High-Precision Internal Diameter Measurements Using Eddy Current Arrays

HydroFORM Phased Array Corrosion Mapping System Part 1 Equipment Overview

SUPPERIOR MODERN PERFORMANCE

Performance of UT Creeping Waves in Crack Sizing

Eddy Current Array for Aerospace

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

Quantitative Short Range Guided Wave System

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS

NDT KONFERANSEN ZENOVIEA VOROSCIUC

The HOIS recommended practice for in-service computed radiography of pipes

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

New Customizable Phased Array UT Instrument Opens Door for Furthering Research and Better Industrial Implementation

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Advanced Digital Radiography for Field NDT

NDT-PRO Services expands service offering

Examination of Pipe Welds by Image Plate Based Computed Radiography System

High Frequency Ultrasonic Systems with Frequency Ranges of 35 to 200 MHz

Application of Guided Wave Technology to Tube Inspection

MULTI-CHANNEL ULTRASONIC FLAW DETECTOR ОКО-22М-UT THE BEST INDUSTRIAL OEM SOLUTION FOR IN-LINE AND IN-SERVICE SYSTEMS

Engineering Policy & Procedure

Advanced Test Equipment Rentals ATEC (2832)

A COMPARISON BETWEEN ASTM E588 AND SEP 1927 RELATING RESOLUTION LIMITS AT DETERMINATION OF THE PURITY GRADE

Surface ECA Probe Catalog. February 2017

FLEXURAL TORSIONAL GUIDED WAVE PIPE INSPECTION

Testing of Buried Pipelines Using Guided Waves

ULTRASONIC MEASUREMENT SYSTEM FOR THE ASSESSMENT OF

Transcription:

INSIGHT published by the British Institute of Non-Destructive Testing For more papers of this publication click: www.ndt.net/search/docs.php3?mainsource=39 PHASED ARRAYS DOI: 10.1784/insi.2008.50.5.253 Curved arrays for improved horizontal sizing in small pipe welds M Moles and J Zhang Paper presented at the ASNT Research Symposium & Spring Conference, 31 March 4 April 2008, Anaheim, California, USA. This paper describes computer modelling and testing of phased arrays curved in the passive axis to improve focusing on small diameter pipe welds; in practice, two curvatures satisfy most diameter and wall thickness applications. The modelling was followed by experimental testing using one of the curved arrays. Not surprisingly, the curved array showed significant improvements over a flat array on reference notch sizing. One of the major advantages of using curved arrays as opposed to matrix arrays is that curving is an economical and simple solution. Introduction In the past, most small diameter pipe welds were radiographed for defects. However, radiography has significant limitations: safety and licensing issues, disruption to work schedules, chemical wastes, and poor detection of planar defects. Manual ultrasonics was permitted by some codes, but suffers from lack of recorded data and dependence on the operator s skills. Automated ultrasonic testing (AUT) has only become commercially viable since the arrival of portable ultrasonic systems (1), and now potentially offers both auditable and reliable results (2). The arrival of ASME B31.3 Code Cases 179 (3) and 181 (4) has permitted AUT of small diameter pipe girth welds. Code Case 181 in particular needs accurate defect sizing and dimensioning, which is a difficult requirement for small diameter pipe as the ultrasound beam naturally spreads (defocuses) on entry. This will lead to defect oversizing, and hence high reject rates. Phased arrays can focus the beam in an active (the axial direction in the pipe), which technically permits better vertical sizing. However, until recently only matrix arrays had the capability of focusing the beam in the horizontal (circumferential), and even their capability is limited. Matrix and curved arrays offer practical solutions for focusing in both axial and circumferential directions. Initially, modelling was performed, which showed that only two curvatures were required to cover essentially all small pipe diameters, independent of wall thickness. Matrix arrays did not offer many benefits over curved arrays, and would be more expensive and complex to implement. The larger radius curved array was manufactured and tested on known reflectors and compared with a standard flat (unfocused) array. Curved arrays have been developed previously for larger pipe diameters (5). This paper describes the results of these tests and shows that curved arrays offer significantly improved sizing in practice. These arrays can be implemented with no extra hardware or software. Corresponding author: Michael Moles is with Olympus NDT, 73 Superior Avenue, Toronto, Ontario, Canada M8V 2M7. Tel: (416) 831 4428; E-mail: Michael.moles@olympusndt.com Jinchi Zhang is with Olympus NDT, 505, boul. Du Parc Technologique, Québec, PQ, Canada, G1P 4S9. Tel: (418) 872 1155; E-mail: jinchi. zhang@olympusndt.com Modelling The PASS (Phased Array Simulation Software) program was used to model the various beams. Probes parameters were: q 5 MHz frequency; q Bandwidth: 70%; q Active area: 10 mm 2 ; q Wedge: SA1-N45S (6) ; q Inspection angle in material: 45 SW; q Pipe diameter: 50 mm to start; q Pipe wall thickness: 5 mm; q Pipe material: carbon steel (LW velocity 5900 m/s, SW velocity 3230 m/s); q Probe active axis was parallel to the pipe axis; q Focal depths: 5 and 10 mm (ID and OD). Note that PASS cannot simulate the field with a beam skip, so the OD field is calculated by ignoring the pipe ID reflection and by just considering total metal path. probe with radius of curvature of passive axis 22 mm. Focal 16-element flat linear probe 5L16-A1. Focal depth 10 mm. Field displayed in beam probe with radius of curvature of passive axis 22 mm. Focal depth 10 mm. Field 16-element flat linear probe 5L16-A1. Focal probe with radius of curvature of passive axis 22 mm. Focal 16-element flat linear probe 5L16-A1. Focal depth 5 mm. Field displayed in beam probe with radius of curvature of passive axis 22 mm. Focal 16-element flat linear probe 5L16-A1. Focal Figure 1. Modelled beam profiles of matrix array (top), curved array (middle) and flat array (bottom) under various parameters Insight Vol 50 No 5 May 2008 253

Three probes were simulated to start: q Matrix probe: 16 8 elements q probe with surface curved in passive axis. The radius of curvature is 22 mm q Flat (unfocused) probe: 5L16-A1(6). Figure 1 shows the modelled results, with beam profiles displayed in both beam axis and cross-section. Comparing the images in the third (last) row with either the first or second row, it was immediately clear that the flat, unfocused beam had significantly worse focusing than either the matrix array or the curved array. There was no obvious advantage in using the matrix probe over a linear array probe with an optimised radius of curvature. This is probably because of the small wall thickness. If the weld cap is not ground off, the beam exit point is far from the weld line, so multiple beam skips have to be used. However, if beam skew ability is required, the matrix array has major advantages. Subsequently, a 10 MHz linear array was modelled for 25, 30, 50, 75 mm diameters. At this stage, wall thickness had been demonstrated as relatively unimportant since multiple skips were required for thinner walls, so beam paths tended to be quite constant. Optimised modelling results are shown in Figure 2(a). For comparison, Figure 2(b) shows the modelling results for a flat 10 MHz linear array. Compared to the flat probe, the curved array produced a small beam width in the pipe circumferential direction near the beam exit position. This initially reduces the beam divergence from the skips at the pipe ID or OD. The pipe OD does not affect the beam shape much, unless the pipe OD is smaller than 25 mm. For this latter case, another probe with a smaller radius of curvature should be used. In summary, one probe with 40 mm radius of curvature is suitable for pipe OD greater than 25 mm, and one probe with 30 mm radius of curvature for pipe OD smaller than 25 mm. Two curved arrays effectively cover all pipe diameters. Experimental results Two pipes were selected for testing: 2.75" (70 mm) pipe and a 1.5" (38 mm) pipe. Note that the 40 mm radius curved array was suitable for pipes from 25 mm to 75 mm. Two wedges were contoured to match the pipe diameters, as per standard practice. The notches and holes were scanned with an Olympus NDT OmniScan MX using typical phased array procedures. The same setup was used for the two probes except the gain was reduced for the curved probe. For the 70 mm pipe, the end on the OD side was detected with one full skip and the end on the ID side was detected with one and a half skips, while the notch was detected with one full skip. For the 38 mm pipe, the end on the OD side was detected with two full skips and the end on the ID side was detected with one and a half skips. The wedge was kept a fixed distance from the target Pipe OD 25 mm. Probe radius 30 mm. Field Pipe OD 25 mm. Probe radius 30 mm. Field lateral Pipe OD 30 mm. Probe radius 40 mm. Field Pipe OD 30 mm. Probe radius 40 mm. Field lateral Pipe OD 30 mm. Field Pipe OD 30 mm. Field lateral Pipe OD 50 mm. Probe radius 40 mm. Field Pipe OD 50 mm. Probe radius 40 mm. Field lateral Pipe OD 50 mm. Field Pipe OD 50 mm. Field lateral Pipe OD 75 mm. Probe radius 40 mm. Field Pipe OD 75 mm. Probe radius 40 mm. Field lateral Pipe OD 75 mm. Field Pipe OD 75 mm. Field lateral (a) Curved 10 MHz linear array (b) Flat 10 MHz linear array Figure 2. Modelling results for 25, 30, 50 and 75 mm pipes with curved (a) and flat (b) 10 MHz arrays. Note the consistent beam profiles 254 Insight Vol 50 No 5 May 2008

so that the notch was best detected at about 53 SW. The 6 db drop criterion was used for sizing. Figures 4-6 show the results for the 70 mm pipe, and Figures 7-9 for the 38 mm pipe. The results are summarised in Table 1. (a) Flat probe. The measured size is 4.2 mm (a) 70 mm (2.75") pipe (b) Curved probe. The measured size is 2.4 mm Figure 4. 70 mm pipe. Detection of the OD end of with the flat and curved probes (1 skip) Discussion (b) 38 mm (1.5") pipe Figure 3. The two pipes for probe comparisons. Top, 70 mm diameter pipe with ASME B31.3 CC 181 OD notch of 6.9 mm 0.5 mm and through-wall hole. Bottom, 38 mm diameter pipe with 6.6 mm 0.5 mm notch and through-wall hole Table 1 shows clearly that curving the array makes a significant improvement in defect sizing. Also, there is minimal cost increase or complexity in using curving arrays, in contrast to using a matrix array. (a) Flat probe. The measured size is 4.4 mm Table 1 size of at the OD end 70 mm pipe 38 mm pipe at the ID end Measured length of the notch of 6.9 mm in length at the OD end at the ID end Measured length of the notch of 6.6 mm in length Flat 10 MHz array Curved 10 MHz array 4.2 4.4 9.6 10 9.8 7.8 2.4 3.2 7.1 3.6 2.2 7 Skips 1 skip 1.5 skips 1 skip 2 skips 1.5 skips 2 skips Note Split images from non-edm notch (b) Curved probe. The measured size is 3.2 mm Figure 5. 70 mm pipe. Detection of the ID end of with the flat and curved probes (1.5 skips) Insight Vol 50 No 5 May 2008 255

(a) Flat probe. The measured notch length is 9.6 mm (a) Flat probe. The measured size is 9.8 mm (b) Curved probe. The measured notch length is 7.1 mm Figure 6. 70 mm pipe. Detection of the 6.9 mm long notch using the flat and curved probes (1 skip) (b) Curved probe. The measured size is 2.2 mm Figure 8. 38 mm pipe. Detection of the ID end of with the flat and curved probes (1.5 skips) (a) Flat probe. The measured size is 10 mm (a) Flat probe. The measured notch length is 7.8 mm (b) Curved probe. The measured size is 3.6 mm Figure 7. 38 mm pipe. Detection of the OD end of with the flat and curved probes (2 skips) (b) Curved probe. The measured notch length is 7 mm Figure 9. 38 mm pipe. Detection of the 6.6 mm long notch using the flat and curved probes (2 skips) 256 Insight Vol 50 No 5 May 2008

For the case of the 38 mm pipe and the flat probe (Figures 7(a) and 8(a)), the C-scan images of the two ends of throughhole show complex shapes. This means the sound field in the pipe is not properly focused, because one end of the acts like a point reflector, showing the basic structure of the sound field. In contrast, the C-scans of the curved probe (Figures 7(b) and 8(b)) show simple images. Ideally the notches should be EDM-machined, conforming to B31.3 Code Case 181 acceptance criteria. If not EDM-machined, the definition of the notch length is not precise. From Figure 6, although the notch is not made by EDM, the curved 10 MHz array detects a smaller notch length than the flat probe does, showing a focusing effect. For the 38 mm pipe for both flat and curved probes, the C-scan images of the notch appear split (Figures 9(a) and (b)). For this non- EDM notch, the ends of the notch may have complex geometries in the curved surface that would affect the response of the corner traps. Since PASS does not allow a simulation of the interface skips which are necessary for thin wall pipes, the design of the probe curvature may not be completely optimised for the given pipe diameter range. One solution would be to use more powerful software, for example CIVA, to deal with the interface skips. INSPECTAHIRE INSTRUMENT COMPANY LTD our equipment will look to improve your safety where you can t see the risk Conclusions n Both modelling and experiments have shown that curving the array for focusing significantly improves the sizing. n Modelling shows that matrix arrays offer few advantages over curving the array except beam skewing, and are more complex and expensive. n Modelling showed that a couple of curvatures will cover all the diameter-thickness combinations, though only one curved array was tested. n As a technology, curved arrays are essentially available now. References 1. R/D Tech, Introduction to Phased Array Ultrasonic Technology Applications, Published by R/D Tech Inc, August 2004. 2. K Chizen and M Moles, Phased array for piping inspections using ASME B31.3, 4 th Middle East Conference on NDT, Bahrain, December 2007. 3. ASME B31.3 CC 179, Use of ultrasonic examination in lieu of radiography for B31.3 applications for materials ½" and less in wall thickness, 28 June 2006. 4. ASME B31.3 CC 181, Use of alternative ultrasonic examination acceptance criteria in ASME B31.3, 23 January 2007. 5. J Zhang, S Labbé and M Moles, Improved lateral focusing for thin-walled gas pipelines girth welds using phased arrays, Proceedings of IPC 2006, International Pipeline Conference, Calgary, Alberta, Canada, Paper # IPC2006-10238, 25-29 September 2006. 6. For wedge and probe details, see http://www.olympusndt.com/ en/probes/ Non destructive testing using thermal imaging Quick & Inexpensive survey Fast turnaround of results Compliance with Part L regulations Graphic results allows you to pinpoint areas of concern Save time and money on re-testing Inspect voids Inspect shafts Inspect tunnels Inspect bridges Inspect tracks Inspect stations Inspectahire RVI Specialists Project Engineering Specialist Contracting www.inspectahire.com 01224 789 692 If you can t believe your own eyes believe ours. Enquiry No 805-07 Insight Vol 50 No 5 May 2008 257