Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction

Similar documents
Fuzzy Logic Control of APF for Harmonic Voltage Suppression in Distribution System

Application of Fuzzy Logic Controller in Shunt Active Power Filter

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

Fuzzy Controlled DSTATCOM for Voltage Sag Compensation and DC-Link Voltage Improvement

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

P. Sivakumar* 1 and V. Rajasekaran 2

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

Improvement of Power Quality Using a Hybrid Interline UPQC

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Journal of Engineering Science and Technology Review 7 (3) (2014) Research Article

FUZZY CONTROLLER FOR A SHUNT ACTIVE POWER FILTER

Compensation of Unbalanced Sags/Swells by Single Phase Dynamic Voltage Restorer

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

DC Link Capacitor Voltage of D-Statcom With Fuzzy Logic Supervision

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Harmonics Elimination Using Shunt Active Filter

HARMONIC contamination, due to the increment of nonlinear

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

A Novel Fuzzy Variable-Band Hysteresis Current Controller For Shunt Active Power Filters

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Chapter 2 Shunt Active Power Filter

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control

IMPLEMENTATION OF FUZZY LOGIC SPEED CONTROLLED INDUCTION MOTOR USING PIC MICROCONTROLLER

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

Fuzzy Controllers for Boost DC-DC Converters

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

A Novel Fuzzy Control Approach for Modified C- Dump Converter Based BLDC Machine Used In Flywheel Energy Storage System

Power Quality Improvement in Distribution System Using D-STATCOM

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

Voltage Control of Variable Speed Induction Generator Using PWM Converter

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS

Indirect Current Control of LCL Based Shunt Active Power Filter

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application

Power Quality improvement of a three phase four wire system using UPQC

Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool

ISSN Vol.03,Issue.42 November-2014, Pages:

DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE

Synchronous Reference Frame Theory For Nonlinear Loads using Mat-lab Simulink

Designing Of Distributed Power-Flow Controller

TRADITIONALLY, passive filters have been used

Figure 1: Closed Loop System

Control of Shunt Active Power Filter for Improvement of Power Quality

Harmonics Reduction using 4-Leg Shunt Active Power Filters

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Study of Harmonic based Indirect Current Controlled in Shunt Active Filter Using Slide Mode Controller Kalpana.S, P.K.Dhal

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Design of Hybrid Active Filter for Power Quality Improvement of Electrical Distribution System Using Fuzzy Logic Controller

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

Literature Review for Shunt Active Power Filters

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

Keywords: Forward Boost Converter, SMPS, Power Factor Correction, Power Quality, Efficiency.

A Novel Fuzzy Adaptive Hysteresis Controller Based Three Phase Four Wire-Four Leg Shunt Active Filter for Harmonic and Reactive Power Compensation

FUZZY LOGIC CONTROL OF FIVE LEVEL DSTATCOM

IMPORTANCE OF VSC IN HVDC

POWER QUALITY IMPROVEMENT USING FUZZY LOGIC BASED NOVEL UPQC

Single Phase Bridgeless SEPIC Converter with High Power Factor

NEURAL NETWORK BASED UNIFIED POWER QUALITY CONDITIONER

29 Level H- Bridge VSC for HVDC Application

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

2020 P a g e. Figure.2: Line diagram of series active power filter.

Synchronous Reference Frame method for Mitigation of Current Harmonics with PI and FLC based Shunt Active Filter under Load Variation

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

Variable Hysteresis Band Current Controller of Shunt Active Filter Based Fuzzy logic Theory under Constant Switching Frequency

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

Cascaded Multilevel Inverter based Active Filter for Power Line Conditioners using Instantaneous mitigates

High Frequency Soft Switching Boost Converter with Fuzzy Logic Controller

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control

Synchronous Reference Frame Control Algorithm Based Four -Leg Inverter DSTATCOM For Power Quality Improvement

Power Quality Enhancement and Mitigation of Voltage Sag using DPFC

Transcription:

Journal of Computer Science 3 (: 76-8, 7 ISSN 549-3636 7 Science Publications Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction C.Sharmeela, M.R.Mohan, G.Uma, J.Baskaran A.C.College of Technology, Anna University, College of Engineering, Guindy, Anna University, Chennai-6 5, India Abstract: Harmonic distortion is a form of electrical noise. It is a superposition of signals, which are of multiples of fundamental frequency. Proliferation of large power electronic systems results in increased harmonic distortion. Harmonic distortion results in reduction of power quality and system stability. This paper presents fuzzy control applicable for active power filter for three-phase systems, which are comprised of nonar loads. The active filter is based on a three-phase inverter with si controllable switches. The AC side of the inverter is connected in parallel with the other nonar loads through a filter inductance. The DC side of the inverter is connected to a filter capacitor. The Fuzzy Controller (FC is used to shape the current through the filter inductor such that the current is in phase with and of the same shape as the input voltage. The results of the computer simulation prove that the injected harmonics are greatly reduced, system efficiency and power factor are improved. Key words: Fuzzy logic, shunt active filter, harmonics reduction INTRODUCTION This paper is motivated by systems which contain multiple non-ar loads, whether they may be controlled and uncontrolled rectifiers for dc based loads, triac based s for heating applications, or some combination of the two. These loads draw currents, which have high harmonic content and poor power factor. The use of active systems for compensating harmonic distortion and reactive power supply in the electrical networks, both at user level or at higher voltage level is preferred than the classical passive compensating methods. Active filters permit the control and the compensation of the distorted currents adapting themselves to the load changes and to changing in working frequency [,]. The harmonics reduction using ANN based is discussed in [3]. The representative load used in this paper is an controlled rectifier as shown in the Fig.. The active filter used to compensate for the nonar load is a three-phase inverter. The Shunt Active Filter (SAF is controlled by a Proportional- Integral (PI and FC. They are used to shape the current to be in phase and of the same shape as the supply voltage. The three-phase SAF configuration is simulated using MATLAB/SIMULINK. The effect of SAF on harmonic reduction is also presented. This paper first discusses the sliding mode control concepts including inverter model for the active filter, which addresses the design of power circuit as well as the. Then the design of power circuit and control source voltage Corresponding Author: C. Sharmeela, A.C. College of Technology, Anna University, Chennai-65, India 76 vs L L L3 T T4 filter inductor controlled rectifier S S3 S5 S4 active filter Fig. : The Three phase system considered in this work circuit is presented. Finally, typical waveforms are given to validate the operation of the active filter THE INVERTER MODEL The voltage source inverter used as an active filter is shown in Fig.. The switches shown support unipolar voltage, bipolar current and are operated in a manner which forces the inductor current, i L, to follow whatever shape that is necessary such that the total load current drawn by the filter and nonar loads is of the correct magnitude and of the same shape as the input voltage. The nominal capacitor voltage must be larger than the peak of the ac source. T3 T6 S6 T5 T S X5 L filter capacitor

Vln L S S D D C C J. Computer Sci., 3 (: 76-8, 7 V C V C Fig. : The single-phase inverter used as an active filter This enables i L to be shaped as required at any point in the supply cycle [4,5]. The switching function U is defined in such a manner that U =, when either S or D is conducting and U = -, when either S or D is conducting. The inductor current is given by dil Vin = + u dt L L ( The inductor current is always shaped as long as V c /> V ln. The epression for the capacitor voltage taking into account the ripple due to the compensating current is derived as dvc ila ilb ilc = ua + ub + uc dt C C C ( Where u a, u b and u c are the independent controls for phases a, b, and c, respectively, and i La, i Lb and i Lc are the compensating currents for phases a, b, and c, respectively. The filter in terms of three first-order independent systems is epressed as i = i + i load comp Vn = iload + u dt + L L (3 Where denotes the phase. Applying, sliding mode control theory to the active power filter, it is necessary that the system should follow the defined sliding surfaces or trajectories. Therefore, the combined nonar load and active power filter should present a unity power factor load to the utility supply. Thus, the trajectories for the currents is defined as iref = k( V n (4 Where k is the scaling factor based on the power demand of the load. When the system is on the sliding surface the standard form for the surface s is written as s = [ i k( Vn ] = (5 77 The tracking of the system on the sliding surface is governed by satisfying the natural control law, s s (6 The equivalent control can be calculated from s. The epression, s for the active filter is obtained by s = i kv = ( n ( i + i kv load comp n Vn = i load + + n L L (7 The equivalent control is obtained by equating eq.(7 to zero. V L u eq = kv n i load ( u kv n L (8 This epression is used for the filter design and to maintain the stability of the filter. DESIGN OF THE POWER CIRCUIT The fundamental design of the power circuit involves selecting the value of filter capacitor, filter inductance and the nominal value of the capacitor voltage. The selection of controllable switches to support unipolar voltage and bipolar current is implemented by a transistor with an anti-parallel diode. The maimum voltage supported by the controllable switches is the maimum DC bus voltage. The nominal value of V c must be at least twice the peak of the -neutral voltage in order to assure control over the slope of the filter inductor current at all times. The size of the filter capacitor is based on the allowable voltage ripple during each cycle of operation. The capacitor voltage with respect to time is calculated by integrating Eq. (. ωt ila ilb ilc = Vo ua ub uc d( ωt ω + + C C C (9 Eq.(9 is used to determine the required capacitor size for an acceptable voltage ripple. The current, which is supported by each switch, is the maimum inductor current. The filter inductor current is given by i = i i i L = P V loads loads rms sinωt ( DESIGN OF THE CONTROLLER SCHEME FOR SAF In the open loop, the switches S - S 6 are operated at 8º mode of conduction for the three-phase voltage source inverter. In this case the current injected by the filter is independent of distorted source current. The source current of the three-phase system supplying a nonar load is not a pure sine wave. In order to shape the source current to be sinusoidal, a closed loop

J. Computer Sci., 3 (: 76-8, 7 control is necessary. In the closed loop control, the actual source current and the sinusoidal reference current are compared and switching pulses for switches S - S 6 are produced. The closed loop for shunt active filter is shown in Fig. 3. It has an inner current control loop and an outer voltage control loop. The inner current control loop uses sliding mode control law to shape the current. The outer voltage loop decides the magnitude of the reference current (k. Fig. 3: The Control scheme of the FC for the active filter Fig. 7: Line Current (Discontinuous Mode using PI Fig. 8: Line Current (Discontinuous Mode using Fuzzy Fig. 4: Line current without active filter Fig. 9: Supply voltage Fig. 5: Line current (Continuous Mode using PI Fig. : Inverter capacitor voltage using PI Fig. 6: Line current (Continuous Mode using Fuzzy Fig. : Inverter capacitor voltage using FC 78

J. Computer Sci., 3 (: 76-8, 7 The capacitor voltage is given to a low pass filter, which gives average capacitor voltage. This is compared with nominal set point capacitor voltage. The error is processed using conventional PI and fuzzy. The output of the is the proportionality factor k. The reference current, i * is obtained through multiplication of k with Vs. The reference current is compared with the actual source current. This is given to the input of the Sliding Mode Controller (SMC. The output of the SMC is given to switches S - S 6. a. Fuzzy : The nonar load variation and changes in capacitor voltage and inductor current affects the source current. The harmonics present in the source current are compensated by developing a suitable switching pattern for the active filter. The SAF controlled using PI is reported in []. Accordingly, PI is developed and simulated. The control of the distortions by proper switching is first simulated by the conventional PI. The PI settings are found to work satisfactorily only for a particular operating condition in the continuous mode. When the conventional PI is employed the source current shaping is achieved along with the significant amount of spikes. The PI setting fails to correct the source current for the discontinuous mode of the non-ar load. Therefore, a mamdani type fuzzy logic is proposed for multiple nonar loads to limit the current distortion using three-phase active power filter. In the presence of fuzzy the source current shaping is achieved with negligible amount of spikes resulting in %reduction in THD. The time taken by the conventional PI in shaping the current is. sec whereas with fuzzy it takes.6 sec. The fuzzy works satisfactorily for both continuous and discontinuous mode of operation at various operating conditions of the non-ar load. Thus, the proposed FC has better dynamic behavior than conventional PI control. It is claimed [6-8] that the fuzzy logic control yields the results, which are superior to those, obtained with the conventional s. In the FC, the simplicity of a PI is combined with the intelligence and adaptiveness of the fuzzy logic based control system. Therefore the FC is characterized as an intelligentadaptive. output label is given in Table. The defuzzification stage produces the final crisp value of k. The centroid method is employed for defuzzification. SIMULATION PARAMETERS Supply = Vpeak, f=5 Hz, Coupling transformer = 3:, Controlled rectifier load with R = 6Ω, L=6.5mH. The firing angle for the ac load is set at = 3 (Continuous and = 9. Table : Fuzzy rule representation e ----------------------------------------------------------------------------- Ce NB NM NS Z PS PM PB NB NB NB NB NB NM NS Z NM NB NB NB NM NS Z PS NS NB NB NM NS Z PS PM Z NB NM NS Z PS PM PB PS NM NS Z PS PM PB PB PM NS Z PS PM PB PB PB PB Z PS PM PB PB PB PB Table : Comparison for THD in continuous and discontinuous modes S.No Modes of Operation THD THD THD Without with SAF with SAF SAF using PI using FC. Continuous mode.3884.3373.35. Discontinuous mode.775.34.443 (discontinuous, bandwidth of the low pass filter is 9 Hz and f d (decision frequency =3 khz RESULTS The current without active filter is given in Fig. 4. The current for continuous mode using PI and Fuzzy are given in Fig. 5 and 6, respectively. The current for discontinuous mode using PI and Fuzzy are given in Fig. 7 and 8, respectively. The supply voltage of the test system is given in Fig. 9. The inverter capacitor voltage using the conventional PI and FC are shown in Fig. and, respectively. The sum of active filter current and load current gives the supply current. The simulation results of Total Harmonic Distortion (THD before and after the implementation of PI and fuzzy based shunt active filter for continuous mode and discontinuous modes of operation are shown in Table. For the proposed FC, the two input signals are capacitor voltage error and change in error are properly scaled and fuzzified. Seven membership functions are used for error, change in error and also for output k. Linear triangular membership function is used in the design of fuzzy for SAF. With two input variable and each variable having seven labels there will be 49 input label pairs. A rule table relating each one of the 49 input label pairs to the respective 79 CONCLUSION The shunt active filter for the three-phase circuit is simulated and the THD measured verifies the reduction of harmonics in the presence of fuzzy based shunt active filter. The simulation results indicate the decrease in the current THD for SAF using FC in both modes of operation. The THD measures in the presence of a controlled shunt active filter are within the IEEE- 59 harmonics standards. The fuzzy control

J. Computer Sci., 3 (: 76-8, 7 demonstrates better dynamic behavior than conventional PI. The main advantages of this approach are that the inverter system can operate simultaneously as an active filter and as a compensator for unbalanced loads. REFERENCES. David, A.T., M.A.M. Adel and Al-Zamel, 995. Single -phase active power filters for multiple non ar loads. IEEE Trans. on Power Electronics, : 63-7.. Janko, N., R. Cajhen, M. Seliger and P. Jereb, 994. Active power filter for non-ar a.c loads. IEEE Trans. on Power Electronics, 9: 9-96. 3. Sharmeela, C., G. Uma and M.R. Mohan, 3. Line harmonics reduction using neural based shunt active power filter. IEEE-TENCON. 4. Kassakian, J.G., M.F. Schlect and G.C. Verghese, 99. Principles of Power Electronics. Addison- Wesley. 5. Mohan, N and P. Robbins, 989. Power electronics Converters, Applications and Design. John Wiley Publication. 6. Akagi, H and H. Fujita, 995. A new power conditioner for harmonic compensation in power systems. IEEE Trans. on Power Delivery, : 57-575. 7. Grady, W.M., M.J. Samotyj and A.H. Noyola, 99. Survey of active power conditioning methodologies. IEEE Trans. Power Delivery, 5: 536-54. 8. Dion et al., 997. DC link fuzzy control for an active power filter sensing the current only. IEEE-PESC., pp: 9-4. 8