ADVANCES in NATURAL and APPLIED SCIENCES

Similar documents
ADVANCES in NATURAL and APPLIED SCIENCES

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

Mutual Coupling Reduction in Patch Antenna Arrays Using EBG Structure

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures

Electromagnetic Band Gap Structures in Antenna Engineering

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

Periodic EBG Structure based UWB Band Pass Filter Sridhar Raja.D

Progress In Electromagnetics Research C, Vol. 12, , 2010

METAMATERIAL ANTENNAS USED FOR WIRELESS APPLICATIONS

INVESTIGATED NEW EMBEDDED SHAPES OF ELEC- TROMAGNETIC BANDGAP STRUCTURES AND VIA EFFECT FOR IMPROVED MICROSTRIP PATCH AN- TENNA PERFORMANCE

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

Mutual Coupling between Two Patches using Ideal High Impedance Surface

Keywords: Array antenna; Metamaterial structure; Microstrip antenna; Split ring resonator

A Compact Dual Band Microstrip Antenna for GPS L1/GS Applications

sensors ISSN

ON THE STUDY OF LEFT-HANDED COPLANAR WAVEGUIDE COUPLER ON FERRITE SUBSTRATE

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

Micro-strip patch antennas became very popular because of

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Bandwidth Enhancement of Microstrip Patch Antenna Using Metamaterials

Citation Electromagnetics, 2012, v. 32 n. 4, p

An MNG-TL Loop Antenna for UHF Near-Field RFID Applications

Determination of Transmission and Reflection Parameters by Analysis of Square Loop Metasurface

Effect of Slot Rotation on Rectangular Slot based Microstrip Patch Antenna

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

Design & Simulation of Circular Rectangular Patch Antenna for Wireless Application

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

HIGH IMPEDANCE SURFACES BASED ANTENNAS FOR HIGH DATA RATE COMMUNICATIONS AT 40 GHz

Design Fundamentals by A. Ciccomancini Scogna, PhD Suppression of Simultaneous Switching Noise in Power and Ground Plane Pairs

DESIGN AND ANALYSIS OF MICROSTRIP FED SLOT ANTENNA FOR SMALL SATELLITE APPLICATIONS

Wideband Gap Coupled Microstrip Antenna using RIS Structure

Planar Inverted L (PIL) Patch Antenna for Mobile Communication

A Miniaturized Ground Edge Current Choke Design, Measurement, and Applications Yu-Shin Wang, Jung-Chieh Lu, and Shyh-Jong Chung, Senior Member, IEEE

Radial EBG Cell Layout for GPS Patch Antennas

BROADBAND AND HIGH-GAIN PLANAR VIVALDI AN- TENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS

EBG STRUCTURES AND ITS RECENT ADVANCES IN MICROWAVE ANTENNA

STUDY OF ARTIFICIAL MAGNETIC MATERIAL FOR MICROWAVE APPLICATIONS

Performance Improvement of a Wire Dipole using Novel Resonant EBG Reflector

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Wide and multi-band antenna design using the genetic algorithm to create amorphous shapes using ellipses

High gain W-shaped microstrip patch antenna

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Comparison between PMC AND AMC

ADVANCES in NATURAL and APPLIED SCIENCES

Gain Enhancement of Pyramidal Horn Antenna using EBG Technique

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

Design of Frequency and Polarization Tunable Microstrip Antenna

Double Broadband Balun Structure Using CRLH TL for Differential Excitation of Dual-Polarized Self-Grounded Bow-Tie Antenna

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A NOVEL TRIPLE-BAND ELECTROMAGNETIC BANDGAP (EBG) STRUCTURE

A Method for Determining Optimal EBG Reflection Phase for Low Profile Dipole Antennas

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

Microstrip Patch Antenna Miniaturization by using Split Ring Resonators which are in-plane for WLAN Application

Evaluating the Electromagnetic Surface Wave of High Impedance Structures by Monopole Antenna and Application for Patch Antennas at Q Band

Triangular Fractal Patch Antenna with Triple Band for Wireless Applications

Ultra-Compact Microstrip Antenna Array and Miniaturized Feeding Network

Susceptibility of an Electromagnetic Band-gap Filter

BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES

Wide-Band Bandpass Filter Using CRLH Transmission Line and Floating Slot Approach

Coplanar capacitive coupled compact microstrip antenna for wireless communication

A Highly Miniaturized Patch Antenna Based on Zeroth-Order Resonance

Chalmers Publication Library

Miniaturization of Microstrip Patch Antenna for Mobile Application

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Design and analysis of T shaped broad band micro strip patch antenna for Ku band application

COMPACT MULTIPORT ARRAY WITH REDUCED MUTUAL COUPLING

On The Broadbanding Characteristics of Multiresonant E Shaped Patch Antenna

INVESTIGATIONS OF REDUCTION OF MUTUAL COU- PLING BETWEEN TWO PLANAR MONOPOLES USING TWO λ/4 SLOTS

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

ISSN: [Shital* et al., 6(12): December, 2017] Impact Factor: 4.116

Analysis and Design of Rectangular Microstrip Antenna in X Band

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems

A METHOD TO DESIGN DUAL-BAND, HIGH-DIRECTI- VITY EBG RESONATOR ANTENNAS USING SINGLE- RESONANT, SINGLE-LAYER PARTIALLY REFLECTIVE SURFACES

5. CONCLUSION AND FUTURE WORK

HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES

Cross Polarization Reduction of Circularly Polarized Microstrip Antenna with SRR

Isolation Enhancement in Microstrip Antenna Arrays

CHAPTER 4 EFFECT OF DIELECTRIC COVERS ON THE PERFORMANCES OF MICROSTRIP ANTENNAS 4.1. INTRODUCTION

SIERPINSKI CARPET FRACTAL ANTENNA ARRAY USING MITERED BEND FEED NETWORK FOR MULTI-BAND APPLICATIONS

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Design of 2 1 Square Microstrip Antenna Array

CYLINDRICAL-RECTANGULAR MICROSTRIP ARRAY WITH HIGH-GAIN OPERATION FOR IEEE J MIMO APPLICATIONS

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

COMPACT CPW-FED SLOT ANTENNA USING STEPPED IMPEDANCE SLOT RESONATORS HARMONIC SUPPRESSION

A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications

Dual-band MIMO antenna using double-t structure for WLAN applications

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

Compact Broadband End-Fire Antenna with Metamaterial Transmission Line

C Band Microstrip Patch Antenna with EBG & Superstrate Structure

Design of Metamaterial Antenna For Wireless Applications

An improved UWB Patch Antenna Design using Multiple Notches and Finite Ground Plane

DESIGN AND SIMULATION OF TRI-BAND RECTANGULAR PATCH ANTENNA USING HFSS

Compact Broadband Rat-Race Coupler in Multilayer Technology Designed with the Use of Artificial Rightand Left-Handed Transmission Lines

Transcription:

ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7):pages 52-56 Open Access Journal Design and Modeling of TL MTM Structure for Antenna Applications 1 D.HelenaMargaret, 2 B.Manimegalai, 3 P.Kalaimathi 1,3 Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India. 2 Thiagarajar College of Engineering, Madurai, Tamilnadu, India. Received 28 February 2017; Accepted 29 April 2017; Available online 2 May 2017 Address For Correspondence: D. Helena Margaret, Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamilnadu, India. Copyright 2017 by authors and American-Eurasian Network for Scientific Information (AENSI Publication). This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ ABSTRACT The Electromagnetic Band Gap structures are artificially engineered structures used to enhance the radiation efficiency of the antennas. In this paper, a transmission line meta-material structure containing meander sections are modeled by deriving transmission line lumped element model. The band gap is obtained by means of reflection phase in HFSS software and lumped transmission line modeling in ADS software. The EBG structure has a band gap at 5.2GHz which is suitable for WLAN antenna applications. KEYWORDS: Band gap, planar electromagnetic band gap (EBG) structure, meta-material (MTM), reflection phase, transmission line model (TLM). INTRODUCTION In recent trends, there has been growing interest in utilizing Electromagnetic Band Gap (EBG) structures in electromagnetic and antenna community. EBG structure is one of the meta-materials with the property to suppress electromagnetic wave propagation (stop band) in a certain frequency band. The structures are periodic geometries constructed by repetition of unit cell in one, two or three dimensions [1]. Its band gap features are revealed in the suppression of surface wave propagation that helps to improve antenna s performance such as increasing the antenna gain and reducing back radiation [2]. The 2-D geometries can be broadly classified into two categories: Textured (Mushroom) type and Planar (or Patterned) type structures. The planar EBG structures are via-less structures, which ease the manufacturing process. In addition, it is less sensitive to the incident angle and polarization. Characterization of EBG structures is performed in full wave numerical simulation for the entire structure based on Finite Element Method [3] and equivalent circuit modeling based on lumped elements and transmission lines [4]. All high impedance structures can be studied on the basis of an effective model which consists of a resonant LC circuit. The fast and accurate modeling by transmission line model shows the computationally efficient results with respect to full wave electromagnetic analysis. Thus, circuit based transmission line models were developed as an alternative to time consuming 3-D full wave based model. In [5], a simple lumped element model for the mushroom like EBG structures was proposed. Later, a model based on both transmission line theory and circuit elements were presented in [6]. In [7], transmission line segments were added to lumped element, that make more accurate prediction of the edges of the band gap as well as the center frequency. In [8] and [9], basic lumped element models were developed for meta-materials. In [10], model for an important class of planar EBG structure is developed over a wide range of frequency. ToCite ThisArticle: D. Helena Margaret, B. Manimegalai, P. Kalaimathi.,Design and Modeling of TL MTM Structure for Antenna Applications. Advances in Natural and Applied Sciences. 11(7);Pages: 52-56

53 D. Helena Margaret et al., 2017/Advances in Natural and Applied Sciences. 11(7) May2017, Pages: 52-56 In this paper, a TL MTM structure is analyzed for its band gap using lumped element transmission line modeling in ADS and verified by reflection phase characterization using HFSS software. It is observed from both analyses that the proposed EBG has band gap at 5.2GHz. Tl Mtm Structure: The top view of the TL MTM structure unit cell is shown in Fig.1. The Planar type EBG structure consists of two conductive layers. Between these two layers, a uniform substrate material FR4 (Fire Retardant) with dielectric constant 4.4 and thickness of 1.6 mm is used. Table.1 summarizes the geometrical parameter values of unit cell with meander line section. Fig.1:Top view of EBG unit cell Table I:Parameters Of Unit Cell Parameter L,W L p L m W m a Value (mm) 7 4 1.5 1 0.45 Parameter b c d e f Value (mm) 0.5 0.3 0.9 0.3 0.1 This EBG structure can be realized as a metal patches connected by meander lines. The details of meander line section are shown separately in Fig.2. This meander section increases the effective inductance of the unit cell. The circuit parameters for meander line section are founded by closed form formulas [11]. To calculate the equivalent inductance of meander line, its section is decomposed into straight conductive segments. Fig.2:Meander line section The inductance of meander line can be calculated from the following expressions L = 0.002 l [ln ( 2l ) + 0.50049 + (w+t)] (1) w+t 3l L total = 2L a + L b + 2L c + L d + L e (2)

54 D. Helena Margaret et al., 2017/Advances in Natural and Applied Sciences. 11(7) May2017, Pages: 52-56 Where, L is the inductance in µh; l is the length; w is the width; t is the thickness of the conducting segments in centimeter; L total is the total inductance of all the segments. At resonance frequency, high impedance could be obtained and hence the EBG do not support any surface wave near the resonance frequency, resulting in a frequency band gap. The resonant frequency ω 0 of a planar EBG can be approximated by equivalent inductance L and capacitance C and is given by expression ω 0 = 1 LC (3) The relative bandwidth of band gap is BW = 1 η L C (4) Where, η is the free space wave impedance. From this expression, the relative bandwidth is directly proportional to the inductance L and inversely proportional to the capacitance C. This means that, if inductance increases the bandwidth increases but alternatively the resonant frequency decreases. In this work, the meander line increases the inductance of the unit cell which in turn reduces the lower edge of the band gap. Modeling Using Lumped Transmission Line Circuits: In this section, the proposed EBG structure is modeled using transmission line circuits. For this structure, a lumped element equivalent circuit composed of L and C components is developed to represent the meander section. When these meander section interconnects conductor patches a capacitive element comes in parallel with the effective inductance. The circuit parameters for meander line section are calculated by using the equation (1) and (2) and the value is L = 1.836 nh.the capacitance of meander line is calculated by using the gap capacitance between two adjacent patches and the value isc = 0.536 pf. Fig.3 shows the equivalent circuit of the planar EBG structure. This circuit model of planar EBG structure is stimulated in ADS software. Fig.4 shows the transmission coefficient for the proposed structure. From the stimulated result, the stop band frequency is obtained from 4.65GHz to 6.1 GHz. Fig. 3:The equivalent transmission line model for the unit cell

55 D. Helena Margaret et al., 2017/Advances in Natural and Applied Sciences. 11(7) May2017, Pages: 52-56 Fig.4: Transmission coefficient from ADS schematic Fig.5: Simulation setup of the EBG structure Fig.6: Reflection phase plot from HFSS software The Fig.5 shows the simulation setup of the EBG structure for reflection phase characterization in HFSS software. The boundary conditions like PEC and PMC are assigned for the unit cell. Fig.6 shows the reflection phase plot of the planar EBG structure. It is verified that the reflection phase plot from HFSS also has the bandgap from 4.7GHz- 5.5 GHz with a center frequency at 5.25GHz. The band gap obtained from both circuit model and full wave Eigen mode solver are listed in Table II

56 D. Helena Margaret et al., 2017/Advances in Natural and Applied Sciences. 11(7) May2017, Pages: 52-56 Table II:Lower and Upper cut off frequencies Results Lower frequency (GHz) Upper frequency (GHz) Circuit model 4.65 6.1 Full wave Eigen mode solver 4.7 5.5 Conclusion: A meandered planar Electromagnetic Band Gap structure is analyzed using lumped element transmission line model. The center frequency obtained from the structure is about 5.2GHz. The reflection phase is characterized using HFSS simulator and its transmission coefficient is analyzed using ADS software. REFERENCES 1. Rahmat-Samii,Y.and H. Mosallaei, 2011. Electromagneticband-gap structures: Classification, characterization and applications, in Proc. Inst.Elect. Eng. ICAP Symp., pp: 560-564. 2. Yang,F.and Y. Rahmat-Samii, 2001. Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure, in Proc. IEEE AP-SDig., 2: 478-481. 3. Yang,F.and Y. Rahmat-Samii, 2003. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE. Trans. Antennas Propagat., 51(10): 2936-2946. 4. Shahparnia,S.and O.M. Ramahi, 2005. A simple and effective model for electromagnetic bandgap structures embedded in printed circuit boards, IEEE Microw. Wireless Compon. Lett., 15(10): 621-623. 5. Sievenpiper, D.F., 1999. High-impedance electromagnetic surface, Ph.D. dissertation, Dept. Electrical Eng., Univ. California, Los Angeles, CA. 6. Rahman,M.and M.A. Stuchly, 2011. Modeling and application of 2D photonic band gap structures, in Proc. IEEE Aerospace Conf., 2: 2/893 2/898 7. Rogers, S.D., 2005. Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes, IEEE Trans. MicrowaveTheory Tech., 53(8): 2495-2505. 8. Caloz,C.and T. Itoh, 2004. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line, IEEE Trans. Antennas Propag., 52(5): 1159-1166. 9. Caloz, C., 2006. Dual Composite Right/Left-Handed (D-CRLH) transmission line metamaterial, IEEE Microw. Wireless Compon. Lett., 16(11): 585-587. 10. Baharak Mohajer-Iravaniand Omar M. Ramahi,2010. Wideband Circuit Model for Planar EBG Structures Ieee Transactions On Advanced Packaging, 33(1): 169. 11. Goran Stojanovic1, Ljiljana Živanov, Mirjana Damjanovic, 2004. Compact Form of Expressions for Inductance Calculation of Meander Inductors Serbian Journal Of Electrical Engineering, 1(3): 57-68.