Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Similar documents
Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

Resistance Measurements

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

II. Experimental Procedure

Ohm's Law and the Measurement of Resistance

Electrical Measurements

Electric Circuit Experiments

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law

Lab 3 DC CIRCUITS AND OHM'S LAW

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

PHYS 1402 General Physics II Experiment 5: Ohm s Law

Lab #1: Electrical Measurements I Resistance

DC CIRCUITS AND OHM'S LAW

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Introduction to Engineering ENGR Electrical Engineering. Dr. Coates

Current, resistance, and Ohm s law

RESISTANCE & OHM S LAW (PART I

ELECTRIC CIRCUITS PREVIEW QUICK REFERENCE. Important Terms

Chapters 35: Electric Circuits

Chapter 1: DC circuit basics

Electric Circuits. Have you checked out current events today?

Explain mathematically how a voltage that is applied to resistors in series is distributed among the resistors.

PHY 132 LAB : Ohm s Law

EET 150 Introduction to EET Lab Activity 1 Resistor Color Codes and Resistor Value Measurement

Industrial Electricity

DC Circuits. Date: Introduction

Basic Circuits. PC1222 Fundamentals of Physics II. 1 Objectives. 2 Equipment List. 3 Theory

DC Electric Circuits: Resistance and Ohm s Law

Chapter 1: DC circuit basics

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CK-12 Physics Concepts - Intermediate Answer Key

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Unit 8 Combination Circuits

Electromagnetism Unit- Current Sub-Unit

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

Lab 4 Ohm s Law and Resistors

EE 210: CIRCUITS AND DEVICES

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103

Lightbulbs and Dimmer Switches: DC Circuits

Lab. 1: Simple Linear Circuit Analysis

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

PH213 Chapter 26 solutions

Pre-Lab for Batteries and Bulbs

EET140/3 ELECTRIC CIRCUIT I

1. A B C D 10. A B C D 19. A B C D 2. A B C D 11. A B C D 20. A B C D 3. A B C D 12. A B C D 21. A B C D 4. A B C D 13. A B C D 22.

Activity Electrical Circuits Simulation

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Activity Electrical Circuits Simulation

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Series Circuit: Electric Circuits

Electric Circuits. Physics 6 th Six Weeks

+ A Supply B. C Load D

Laboratory 2 (drawn from lab text by Alciatore)

Lab 11: Circuits. Figure 1: A hydroelectric dam system.

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment

Ohm's Law and DC Circuits

DC Circuits, Ohm's Law and Multimeters Physics 246

Why it s important: Electrical circuits are the basis of every electrical device, from electric lights to microwave ovens to computers.

1/15/2012. Overview. 06-Basic Laws Part 3 Text: Chapter Voltage Drop. Voltage Drop. Multi-Resistor Circuits. Voltage Drop

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Resistance and Ohm s law

Electricity. Intext Exercise 1

Ohm s Law and Electrical Circuits

General Lab Notebook instructions (from syllabus)

Experiment 16: Series and Parallel Circuits

I = q/ t units are C/s = A (ampere)

Series and Parallel Resistors

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

18-3 Circuit Analogies, and Kirchoff s Rules

Ohm s Law. What You ll Need A computer that can run JAVA applets Calculator Paper & Pencil for calculations.

Configurations of Resistors

Regents Physics Mr. Mellon Based on Chapter 22 and 23

EGR 101 LABORATORY 1 APPLICATION OF ALGEBRA IN ENGINEERING Wright State University

Lab 1: Basic Lab Equipment and Measurements

Introduction to the Laboratory

Voltage, Current and Resistance

EECS40 Lab Introduction to Lab: Guide

I(A) FIGURE 1 - Current vs. Time graph

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by

Chapter 12 Electric Circuits

Unit 3. Electrical Circuits

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it.

Pre-LAB 5 Assignment

Circuits: Light-Up Creatures Student Advanced version

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Lab #2 Voltage and Current Division

Vocabulary. Electric Current. Electric Circuit. Open Circuit. Conductors. Insulators. Ohm s Law Current. Voltage. Resistance.

Electronics & Control

The Art of Electrical Measurements

Downloaded from

Series and Parallel Circuits. Series Connection

Transcription:

Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which dissipates electrical energy in the form of heat. ll conductors (metals) have resistance, but the material used in most resistors is carbon-glass. esistance manifests itself at the microscopic level as collisions between conduction electrons (those actually involved in carrying the current) and the atoms making up the resistive material. esistance is actually determined by the geometry of the material, and the intrinsic property of a material which is the macroscopic manifestation of the collisions between the electrons and the atoms is called the resistivity of the material. The resistivity and the material geometry determine the resistance of the material, and the relationship for most geometries is = ρl where ρ is the resistivity of the material, l is the length over which the current flows, and is the cross sectional area through which the current flows. These are shown below in figure. () l ρ I Figure : The geometry for the above equation. Ohm s Law states the following: = I ()

where is the voltage across the resistor in volts () and I is the current flowing through the resistor in amps (). The units of resistance are then / = Ω, called ohms. If the resistor is linear, then the ratio /I is always the same and the resistance is a constant value. Then we may write = I () which states that and I are proportional with a constant of proportionality. This is the linear form of Ohm s law, and the most famous form. ll standard resistors follow this mathematical equation and are therefore technically linear resistors. Sometimes, for some materials or devices, this is not the case. Such devices are then termed non-linear. When we build a circuit with resistors we can connect them in general in one of two ways: in series or in parallel. The way a resistor is sketched, and two resistors in series, are shown below. Putting two resistors in series makes the net (equivalent) resistance the sum of the resistors: Figure : The schematic representation of a resistor (left) and two resistors in series (right). eq = +, or in general for many resistors eq = + + + + N (4) for a total of N resistors in series. For a parallel configuration, the resistors look like figure. The Figure : The schematic representation of two resistors in parallel. net resistance for the parallel resistors is given by the following expression eq = + (5) where eq will be less than either of the two resistances making up the parallel combination. For many resistors in parallel, the equation becomes = + + + + (6) eq N

and, once again, eq will be less than the smallest resistor in the combination. Usually the circuit has a mixture of parallel and series resistors, and to find the equivalent resistance of the entire circuit one must add different sections in either series or parallel. For example, figure 4 shows such a circuit. The equivalent resistance between points and is found eq = Ω Figure 4: sample circuit with series and parallel resistors. Figure 5: The same schematic but with eq in place. using the above equations for adding resistors. Let = 0Ω, = 0Ω, and = 5Ω. The upper right pair is in parallel and can be added as such, yielding the equivalent resistance of the pair in its place: / eq = /0Ω+/5Ω. This gives a value of eq = Ω, and this equivalent resistance can then replace the pair in figure 5. Similarly, the lower left three resistors can be added in parallel and replaced by their equivalent resistance: / eq = / +/ +/. Plugging in the values for and gives eq = 7.7Ω, with the schematic as shown in figure 6. t this point, there are resistors (between points and Ω 7.7Ω Figure 6: The schematic now with eq in place for the three parallel resistors. ) in series on both the top path and the bottom path. We can calculate the equivalent resistance for the top ( eq = + +Ω = Ω) and the bottom ( eq = 7.7Ω+ + = 7.7Ω) and replace the series resistances with these. The schematic now looks like figure 7. Finally, figure 8 shows two resistors in parallel, which can be added as such to yield the overall equivalent resistance for the entire circuit: / eq = /Ω+/7.7Ω, which gives eq = 7Ω. This is the amount of resistance between points and of the original circuit shown in figure 4, but in a simplified form.

Ω 7.7Ω 7 Ω Figure 7: The schematic now with eq in place for the series resistors. Figure 8: The equivalent circuit for the original circuit of figure 4 That is, these two circuits (figure 4 and figure 8) have the same net resistance between points and, even though one is much more complicated than the other. battery connected between points and will supply the same current to either circuit.. oltmeters and mmeters oltmeters measure the potential difference across some circuit element or elements. The voltmeter is placed in parallel with the element and since it has a very high resistance it does not draw any current from the circuit and therefore does not affect the circuit. The reading on the meter is the voltage drop between the two points where the meter leads are placed in the circuit. This is depicted in figure 9. mmeters read the current passing through a particular branch of a circuit Ω 7.7Ω Figure 9: voltmeter reading the potential difference across a resistor in a circuit. (i.e. a wire). The ammeter must be wired directly into the circuit in series where one wants to know the current. The resistance of the ammeter is very low (essentially zero) and therefore does not affect the circuit. This is depicted in figure 0. Ω 7.7Ω Figure 0: n ammeter reading the current through a wire in a circuit. 4

4 Procedure 4. esistor Choose a resistor and wire it up as shown in figure with the ammeter in series and a variable voltage supply. You will vary the voltage on the supply and read the voltage drop across the resistor + - ariable oltage Supply Figure : The circuit for part. with the voltmeter. The corresponding value of the current should also be noted. Do this for eight different voltage values over a wide range. epeat for each of the other three resistors. Make sure you know which resistor goes with which data for the remainder of the lab. Note the color bands of the resistors on your data sheet. Use a digital voltmeter on the Ω scale to find the value of each of your resistors this is the real (theoretical) value. 4. Series Wire two resistors in series and record their values. Hook up an ammeter in series as well as the voltage source. For three different voltages, measure the voltage across the pair and each individual resistor. ecord the current as well for each voltage. Sketch your circuit, and repeat this for a different pair of resistors. 4. Parallel Wire two resistors in parallel and record their values. Hook up the ammeter as shown in figure. For three different voltages, measure the current into the circuit as well as the voltage across the circuit, and then measure the voltage across each resistor. Sketch the circuit, and repeat for a different pair of resistors. 5 Calculations 5. esistor For each resistor, plot versus I for your data. The resistance of each can be found by doing a linear regression of this data. These values should be compared to the theoretical values you 5

+ ariable oltage Supply Figure : The parallel circuit. obtained from the digital meter. You should also compare the values given by the color bands on the resistors to the theoretical values you got from the meter that is, four-line summaries treating the color band value ± tolerance resistance as an experimental result. 5. Series Calculate the total resistance of your series circuits using and I. Using the equation for adding series resistances, calculate the equivalent resistance of the pair (using theoretical values). Compare your average equivalent resistance value ± error in a four-line summary for each pair of resistors to what the theoretical values, when added in series, say the value should be. In addition, note how the two individual voltages compare to the total voltage across the pair. What is the relationship? 5. Parallel Calculatethetotalresistanceofthepairfrom andi foreachtrialforagivenpairofresistors. Find the average and associated error for the trials. Find the equivalent resistance using the theoretical resistances, and compare in a four line summary to your average ± error. Calculate the I through each resistor using and. How do the two I s compare to the total I? 6 Questions. Explain why when one puts two resistors in series the resistance increases while for the same two in parallel the resistance decreases.. We assumed your ammeter had very little resistance (it really is pretty small), but its value 0. Explain the effect your ammeter has on a circuit when it is placed in the curcuit.. If you first measure across (position # of the figure) and use I from the ammeter, you get a resistance value from Ohm s law. If you then measure as shown in position # of 6

the figure and use I from the ammeter you will get a different value. If you are trying to determine the resistance of the resistor in the curcuit, which is correct? Explain. position # position # 7

Color codes for resistors x 0 _ Ω Tolerance: Silver = +/ 0% Gold/lack = +/ 5% ed = +/ % 0 lack rown ed Orange 4 Yellow 5 Green 6 lue 7 iolet 8 Grey 9 White 8