High Quality Audio, J-FET Input, Dual Operational Amplifier

Similar documents
High Quality Audio, J-FET Input, Dual Operational Amplifier

High Quality Audio, Bipolar Input, Dual Operational Amplifier

MUSES8820. High Quality Audio Dual Operational Amplifier - + PACKAGE OUTLINE

NJM8801. High Quality Audio Dual Operational Amplifier FEATURES. EQUIVALENT CIRCUIT ( 1/2 Shown ) -1-

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

MUSES8832. Rail-to-Rail Output, High Quality Audio, Dual Operational Amplifier. MUSES and this logo are trademarks of New Japan Radio Co., Ltd.

NJM2734. Rail-to-Rail Input/Output Quad Operational Amplifier

NJM4582 AUDIO DUAL OPERATIONAL AMPLIFIER

NJM2734SCC. Rail-to-Rail Input/Output Quad Operational Amplifier PACKAGE OUTLINE

NJM5532 LOW-NOISE DUAL OPERATIONAL AMPLIFIER

Low Offset, Low Drift Dual JFET Input Operational Amplifier. NJM2749M, NJM2749AM : DMP8 NJM2749E, NJM2749AE : SOP8 JEDEC 150mil V + OUTPUT B INPUT B

NJM2748/2748A. Low Offset, Low Drift single JFET Input Operational Amplifier -1-

NJM4585. Low Noise, Bipolar Input Dual, Audio Operational amplifier EQUIVALENT CIRCUIT PIN CONFIGURATION. FEATURES Designed for High-Quality Sound

Rail-to-Rail Input/Output Quad Operational Amplifier 8. C OUTPUT 9. C -INPUT 10. C +INPUT 11. GND(V ) 12. D +INPUT 13. D INPUT 14.

NJM4580 DUAL OPERATIONAL AMPLIFIER

NJM2722. Single Ultra-High speed and Wide Band Operational Amplifier

NJM4558C DUAL OPERATIONAL AMPLIFIER V + OUTPUT -INPUT +INPUT V -

NJM2732. Rail-to-Rail Input/Output Dual Operational Amplifier

SINGLE SUPPLY QUAD OPERATIONAL AMPLIFIER

NJU High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier

NJM12904L SINGLE SUPPLY DUAL AMPLIFIER

NJM2115 DUAL OPERATIONAL AMPLIFIER

Wide-Band,High-Speed,Low-Offset,Low-Noise Rail-to-Rail Input/Output CMOS Operational Amplifier

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER

High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier PIN FUNCTION 1. OUTPUT A 2. INPUT A 3. +INPUT A

NJM2720. Single Ultra-High speed and Wide Band Operational Amplifier

NJM2737. Low Noise, Rail-to-Rail Input/Output Dual Operational Amplifier

NJM13404 SINGLE SUPPLY DUAL OPERATIONAL AMPLIFIER 1 8 A

NJM12904 SINGLE SUPPLY DUAL AMPLIFIER -INPUT +INPUT OUTPUT GND(V-)

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

NJM5532C LOW-NOISE DUAL OPERATIONAL AMPLIFIER NJM5532CG (SOP8) FEATURES PIN CONFIGURATION. EQUIVALENT CIRCUIT (Each Amplifier) - 1 -

NJM8202. Single Supply, Rail-to-Rail Output Dual Operational Amplifier

UNISONIC TECHNOLOGIES CO., LTD LM833 Preliminary CMOS IC

Designated client product

NJM8512/NJM8513. Precision, JFET Input Operational Amplifier

NJM2718. Single-Supply High-Operating voltage Dual Operational Amplifier PACKAGE OUTLINE

NJM2904C / NJM2904CA SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

MUSES03. High-Quality Sound, J-FET Input, Single Operational Amplifier for Premium Audio. GENERAL DESCRIPTION

Dual Precision Operational Amplifier

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

NJU7046/NJU7047/NJU7048

LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS

Precision Operational Amplifier

Low Noise, High-Speed Dual Operational Amplifier. Vni = 3nV/ Hz typ. (at f=10khz) ft = 90MHz typ. (at V + /V - = ±2.5V)

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

NJU7026/NJU7027/NJU7028

NJU7076/NJU7077/NJU7078

TL072 TL072A - TL072B

NJM324C. Low power quad operational amplifiers

Precision Operational Amplifier

LM837 Low Noise Quad Operational Amplifier

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER V + B OUTPUT B -INPUT B +INPUT SOP8 SSOP8 MSOP8(VSP8) SOP14 SSOP14

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD MC4556

UNISONIC TECHNOLOGIES CO., LTD

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

UNISONIC TECHNOLOGIES CO., LTD

NJM320A/NJM321A. Low power single channel OP-Amp

TEB1033 TEF1033-TEC1033

TL081 TL081A - TL081B

Low power quad operational amplifiers

Low power dual operational amplifier

TL074 TL074A - TL074B

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

TL082 TL082A - TL082B

Non-inverting input 1. Part Number Temperature Range Package Packing Marking. 4558C MC4558CPT TSSOP8 Tape & Reel MC4558IN

LM833 Dual Audio Operational Amplifier

LM833 Dual Audio Operational Amplifier

NJM2794. Ground Noise Isolation Amplifier PACKAGE OUTLINE

OPERATIONAL AMPLIFIER & VOLTAGE REFERENCE KL103/A TECHNICAL DATA DESCRIPTION. PIN CONNECTIONS (top view) OPERATIONAL AMPLIFIER

UA741 GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

TL 072 S G Green G : Green. TL072SG-13 S SOP-8L 2500/Tape & Reel -13

UNISONIC TECHNOLOGIES CO., LTD

DUAL BIPOLAR OPERATIONAL AMPLIFIERS General Description. Features. Applications

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

RC4741 General Purpose Operation Amplifier

TS522. Precision low noise dual operational amplifier. Features. Description

TL071 TL071A - TL071B

TL061 TL061A - TL061B

UNISONIC TECHNOLOGIES CO., LTD MC4558

Internally-compensated dual low noise operational amplifier NE/SE5532/5532A

MC4558 WIDE BANDWIDTH DUAL BIPOLAR OPERATIONAL AMPLIFIERS. INTERNALLY COMPENSATED SHORT CIRCUIT PROTECTION GAIN AND PHASE MATCH BETWEEN

TL081 TL081A - TL081B

MC33001/A/B MC34001/A/B MC35001/A/B GENERAL PURPOSE SINGLE JFET OPERATIONAL AMPLIFIERS.

MC33078 LOW NOISE DUAL OPERATIONAL AMPLIFIER

MARKING DIAGRAMS ORDERING INFORMATION DUAL MC33272AP AWL YYWW PDIP 8 P SUFFIX CASE 626 SO 8 D SUFFIX CASE ALYWA QUAD

MARKING DIAGRAMS ORDERING INFORMATION Figure 1. Representative Schematic Diagram (Each Amplifier) DUAL MC33078P

MC Low noise quad operational amplifier. Features. Description

TL084 TL084A - TL084B

UNISONIC TECHNOLOGIES CO., LTD LM321

TSM100 SINGLE OPERATIONAL AMPLIFIER AND SINGLE COMPARATOR

4in-1out Audio Selector with Isolation amplifier

High Speed FET-INPUT OPERATIONAL AMPLIFIERS

RT2904WH. RobuST low-power dual operational amplifier. Applications. Features. Description

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER

DUAL LOW NOISE OPERATIONAL AMPLIFIERS General Description. Features. Applications

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER. INTERNALLY ADJUSTABLE INPUT OFFSET.

NJM2783. Preliminary. Monaural Microphone Amplifier with ALC

Transcription:

MUSES High Quality Audio, J-FET Input, Dual Operational Amplifier The MUSES is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound. FEATURES Operating Voltage Vopr= to ±V Output noise 9.nV/ Hz at f=khz Input Offset Voltage.mV typ. mv max. Input Bias Current pa typ. pa max. at Ta= C Voltage Gain db typ. Slew Rate V/μs typ. Bipolar Technology Package Outline DIP PIN CONFIGURATION PACKAGE OUTLINE PIN FUNCTION - + + - 7. A OUTPUT. A -INPUT. A +INPUT. V-. B +INPUT. B -INPUT 7. B OUTPUT.V+ MUSESD MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.9-- - -

MUSES ABSOLUTE MAXIMUM RATINGS (Ta= C) PARAMETER SYMBOL RATING UNIT Supply Voltage V + /V - ± V Common Mode Input Voltage V ICM ± (Note) V Differential Input Voltage V ID ± V Power Dissipation P D 9 mw Output Current I O ± ma Operating Temperature Range T opr - to + C Storage Temperature Range T stg - to + C (Note) For supply Voltages less than ± V, the maximum input voltage is equal to the Supply Voltage. RECOMMENDED OPERATING CONDITION (Ta= C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Supply Voltage V + /V - - ±9 - ± V ELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V + /V - =±V, Ta= C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Current I cc No Signal, R L = -.. ma Input Offset Voltage V IO Rs kω (Note, ) -.. mv Input Bias Current I B (Note, ) - pa Input Offset Current I IO (Note, ) - pa Voltage Gain A V R L kω, V o =±V 9 - db Common Mode Rejection Ratio CMR V ICM =±V (Note) 7 - db Supply Voltage Rejection Ratio SVR V + /V - =±9. to ±.V (Note, ) 7 - db Max Output Voltage V OM R L =kω ± ±. - V Max Output Voltage V OM R L =kω ± ±. - V Input Common Mode Voltage Range V ICM CMR db ± ±9. - V (Note) Measured at VICM=V (Note) Written by the absolute rate. (Note) CMR is calculated by specified change in offset voltage. (VICM=V to +V and VICM=V to V) (Note) SVR is calculated by specified change in offset voltage. (V+/V = to ±V) - - Ver.9--

MUSES AC CHARACTERISTICS (V + /V - =±V, Ta= C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Gain Bandwidth Product GB f=khz -. - MHz Unity Gain Frequency f T A V =+, R S =Ω, R L =kω, C L =pf -. - MHz Phase Margin φ M A V =+, R S =Ω, R L =kω,c L =pf - - deg Input Noise Voltage V NI f=khz, A V =+, R S =Ω - 9. - nv/ Hz Input Noise Voltage V N RIAA, R S =.kω, khz LPF -.. μvrms Total Harmonic Distortion THD f=khz, A V =+, R L =kω, Vo=Vrms -. - % Channel Separation CS f=khz, A V =-+, R S =kω, R L =kω - - db Positive Slew Rate +SR A V =, V IN =V p-p, R L =kω, C L =pf - - V/μs Negative Slew Rate -SR A V =, V IN =V p-p, R L =kω, C L =pf - - V/μs Ver.9-- - -

MUSES Application Notes Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation P D. The dependence of the MUSES P D on ambient temperature is shown in Fig. The plots are depended on following two points. The first is P D on ambient temperature C, which is the maximum power dissipation. The second is W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig. is drawn by connecting those points and conforming the P D lower than C to it on C. The P D is shown following formula as a function of the ambient temperature between those points. Dissipation Power P D = Tjmax - Ta θja [W] (Ta= C to Ta= C) Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, P D is different in each package. While, the actual measurement of dissipation power on MUSES is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage V DD ) X (Supply Current I DD ) (Output Power Po) The MUSES should be operated in lower than P D of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. P D [mw] 9 DIP - (Topr max.) (Tstg max.) Ta [deg] Fig. Power Dissipations vs. Ambient Temperature on the MUSES - - Ver.9--

MUSES TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT AMPLITUDE(FREQUENCY) V + /V - =±V,A V =+, R g=kohm,r f=9.kohm, R L =kohm,ta= T O T A L H A R M O N IC D IS T O R T IO N + N O IS E vs OUTPUT AMPLITUDE(FREQUENCY) V + /V - =±V,A V =+, R g=kohm,r f=9.kohm, R L =kohm,ta= THD+Nois e [% ].. f=kh z kh z THD+Noise [% ].. f=kh z kh z. H z. H z H z H z.... O utput Am plitu d e [V rm s].. O utput Am plitu d e [V rm s] T O T A L H A R M O N IC D IS T O R T IO N + N O IS E vs OUTPUT AMPLITUDE(FREQUENCY) EQUIVALENT INPUT NOISE DENSITY vs FREQ UENCY V + /V - =,A V =+, R g=kohm,r f=9.kohm, R L =kohm,ta= V + /V - =±V,A V =+,R s=ohm,r L =,Ta= 7 THD+Noise [% ]... kh z f=kh z H z H z Noise D ensity [n V / Hz]... O u tp u t A m p litu d e [V rm s ],, Frequency [H z] EQUIVALENT INPUT NOISE DENSITY vs FREQ UENCY EQUIVALENT INPUT NOISE DENSITY vs FREQUENCY V + /V - =±V,A V =+,R s=ohm,r L =,Ta= V + /V - =,A V =+,R s=ohm,r L =,Ta= 7 7 Noise D ensity [n V / Hz] Noise D ensity [n V / Hz],,,, Frequency [H z] Frequency [H z] Ver.9-- - -

MUSES CHANNEL SEPARATION vs FREQUENCY CHANNEL SEPARATION vs FREQUENCY - V + /V - =±V,A V =-, R S =kohm, R L = ko h m, V o = V rm s, T a = - V + /V - =±V,A V =-, R S =kohm, R L = ko h m, V o = V rm s, T a = - - C hannelseparation [db] - - - C hannelseparatio n [d B ] - - - - 7-7 - - Frequency [H z] Frequency [H z] CHANNEL SEPARATION vs FREQUENCY CLOSED-LOOP GAIN/PHASE vs FREQUENCY (TEM PERATURE) - V + /V - =,A V =-, R S = ko h m, R L = ko h m, V o = V rm s, T a = V + /V - =±V, A V =+, R S =ohm, R T =ohm,r L =kohm,c L =pf V IN =-dbm,vicm =V C hannelseparation [db] - - - - Volta g e G a in [d B ] - Gain Phase Ta= - - Phase Shift [d e g ] - 7 - - - Frequency [H z] - Frequency [kh z] - CLOSED-LOOP GAIN/PHASE vs FREQUENCY (TEMPERATURE) C L O S E D L O O P G A IN /P H A S E vs FREQUENCY (TEMPERATURE) V + /V - =±V, A V =+, R S =ohm, R T =ohm,r L =kohm,c L =pf V IN =-dbm,vicm =V V + /V - =, A V =+, R S =ohm, R T =ohm, R L =kohm,c L =pf V IN =-dbm,vicm =V Gain Ta= - Gain Ta= - Volta g e G a in [d B ] - Phase - Phase Shift [d e g ] Voltage G ain [db] - Phase - Phase Shift [d e g ] - - - - - - - - Frequency [kh z] Frequency [kh z] - - Ver.9--

MUSES TRANSIENT RESPONSE (TEM PERATURE) V + /V - =±V,V IN =V P-P,f=kH z PulseE dge=nsec,g v=db,c L =pf,r L =kohm Input V oltage SLEW RATE vs TEM PERATURE V + /V - =±V,V IN =V P-P,f=kH z PulseEdge=nsec,G v=db,c L =pf,r L =kohm Fall O utput Volta g e [V ] - Ta= - - - - - - In p u t V o ltage [V] Sle w R a te [V /μsec] Rise - O utput V oltage - - - 7 9 - - 7 Time [μsec] TRANSIENT RESPONSE (TEM PERATURE) V + /V - =±V,V IN =V P-P,f=kH z PulseEdge=nsec,G v=db,c L =pf,r L =kohm Input V oltage SLEW RATE vs TEM PERATURE V + /V - =±V,V IN =V P-P,f=kH z PulseEdge=nsec,G v=db,c L =pf,r L =kohm Fall O u tp u t V o ltage [V] Ta= - - - - - In p u t V o lta g e [V ] Slew R ate [V/μsec] Rise - - - O utput V oltage - - - 7 9 - - 7 Time [μsec] O u tp u t V o lta g e [V ] TRANSIENT RESPONSE (TEM PERATURE) V + /V - =,V IN =V P-P,f= kh z PulseEdge=nsec,G v=db,c L =pf,r L =kohm Input V oltage Ta= - - - - - Input Voltage [V] Sle w R a te [V /μsec] SLEW RATE vs TEM PERATURE V + /V - =,V IN =V P-P,f=kH z PulseEdge=nsec,G v=db,c L =pf,r L =kohm Fall Rise - O utput Voltage - - - 7 9 Tim e [μsec] - - - - 7 Ver.9-- - 7 -

MUSES SUPPLY CURRENT vs SUPPLY VOLTAGE (TEMPERATURE) G V =db,vin=v SUPPLY CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) G V =db,vin=v Ta= - ±V V + /V - =±V Supply Current [ma] Supply Current [ma] 9 Supply Voltage [V + /V - ] - - 7 INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE (TEMPERATURE) V ICM =V,Vin=V POWER SUPPLY REJECTION RATIO vs TEMPERATURE V ICM =V,V+/V-= to ±V Input Offset Voltage [mv] - Ta= - - - - - Supply Voltage [V + /V - ] Power Supply Rejection Ratio [db] 9 7 - - 7,, INPUT BIAS CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) V ICM =V,, INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) V + /V - =±V,, Input Bias Current [pa],, ±V V+/V-=±V Input Bias Current [pa],, Ta= - - 7 - - - - - Common-Mode Votage [V] - - Ver.9--

MUSES,, INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) V + /V - =±V,, INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) V + /V - =,, Input Bias Current [pa],, Ta= Input Bias Current [pa],, Ta= - - - -9 - - 9 Common-Mode Voltage [V] - -9 - - 9 Cmmon-Mode Voltage [V], INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) V ICM =V INPUT O FFSET VO LTAG E vs O UTPUT VO LTAG E (TEMPERATURE) V + /V - =±V,R L = ko h m to V Input Offset Current [pa], ±V V+/V-=±V In p u t O ffse t V o latage [m V] - - - - Ta= - - - 7 - - - - - O utput Volta g e [V ] O pen-loop V olta g e G a in [db] 9 7 OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE R L =kohm to V,V + /V - =±V,V o=-v to +V O pen-loop Voltage G ain [d B ] 9 7 OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE R L = ko h m to V,V + /V - =±V,Vo=-V to +V - - 7 - - 7 Ver.9-- - 9 -

MUSES O pen-loop Volatage G ain [db] OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE R L = ko h m to V,V + /V - =,Vo=-V to +V 9 7 - - 7 Common-Mode Rejection Ratio [db] COMMON-MODE REJECTION RATIO vs TEMPERATUER (INPUT COMMON-MODE VOLTAGE) V + /V - =±V Vicm=V to -9V V to +9V - - 7 COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V + /V - =±V COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V + /V - = V to +V Common-Mode Rejection Ratio [db] Vicm=V to -V V to +V Common-Mode Rejection Ratio [db] Vicm=V to -V - - 7 - - 7 MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEM PERATURE) MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEM PERATURE) V + /V - =±V,G v=open,r L to V V + /V - =±V,G v=open,r L to V Maximum Output Voltage [V] 9 - - -9 - - - Maxim u m O u tp u t V o ta g e [ V ] - - - - - - Load R esistance [ohm ] Load R esistance [ohm ] - - Ver.9--

MUSES MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEM PERATURE) V + /V - =,G v=open,r L to V MAXIMUM OUTPUT VOLTAGE vs TEM PERATURE (SUPPLY VOLTAGE) G v=open,r L = ko h m to V Maxim u m O u tp u t V o ltage [V ] - - - - - Maximum Output Voltage [V] 9 - - -9 - - V+/V-=±V ±V - - - - 7 Load R esistance [ohm ] MAXIMUM OUTPUT VOLTAGE vs TEM PERATURE (SUPPLY VOLTAGE) G v=open,r L =kohm to V GAIN BANDW IDTH PRODUCT vs TEMPERATURE (S U P P L Y V O L T A G E ) f= kh z,a V =db, R S =ohm, R T =ohm,r L = ko h m, C L =pf,v IN =-dbm Maximum Output Volta g e [V ] 9 - - -9 - V+/V-=±V ±V Gain B andw idth Product [M H z] V+/V-=±V ±V - - - - 7 - - 7 UNITY GAIN FREQUENCY vs TEMPERATURE (SUPPLY VOLTAGE) A V =+, R S =ohm, R T =ohm,r L =kohm, C L =pf,v IN =-dbm 9 PHASE M ARGIN vs TEM PERATURE (SUPPLY VOLTAGE) A V =+, R S =ohm, R T =ohm,r L = ko h m, C L =pf,v IN =-dbm Unity G a in Frequency [M H z] V + /V - =±V ±V Phase M argin [deg] V + /V - =±V ±V - - 7 - - 7 Ver.9-- - -

MUSES MEMO [CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - - Ver.9--