Experiment Topic : FM Modulator

Similar documents
ETEK TECHNOLOGY CO., LTD.

Chapter 6. FM Circuits

Chapter 14 FSK Demodulator

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Glossary of VCO terms

Exercise 2: FM Detection With a PLL

Experiment: Digital Modulation and Demodulation

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation

Electronics I. Midterm #1

Exercise 1: Frequency and Phase Modulation

Chapter 11 ASK Modulator

Analog Electronic Circuits

ITT Technical Institute. ET215 Devices I Chapter 2 Sections

Understanding VCO Concepts

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

VCO Design Project ECE218B Winter 2011

AC LAB ECE-D ecestudy.wordpress.com

ECE4902 B2015 HW Set 1

Radio Frequency Electronics

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform.

Speed Control of DC Motor Using Phase-Locked Loop

Exp 3 COLCULATE THE RESPONSE TIME FOR THE SILICON DETECTOR

DMI COLLEGE OF ENGINEERING

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION...

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

FSK DEMODULATOR / TONE DECODER

Project 6 Capacitance of a PN Junction Diode

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents

Homework Assignment 04

Semiconductor Devices Lecture 5, pn-junction Diode

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

Question Paper Code: 21398

Integrated Circuits: FABRICATION & CHARACTERISTICS - 4. Riju C Issac

Chapter 5: Diodes. I. Theory. Chapter 5: Diodes

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Keywords: rf, rfic, wireless, cellular, cdma, if, oscillator, rfics, IF frequencies, VCO, rf ic

XR-2211 FSK Demodulator/ Tone Decoder

Exercise 2: Demodulation (Quadrature Detector)

AC : A CAPSTONE ANALOG INTEGRATED CIRCUITS PROJECT FOR ELECTRONICS ENGINEERING TECHNOLOGY MAJORS

4. Forward bias of a silicon P-N junction will produce a barrier voltage of approximately how many volts? A. 0.2 B. 0.3 C. 0.7 D. 0.

Unless otherwise specified, assume room temperature (T = 300 K).

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

Designing A High-Frequency, Higher-Power Buck/Boost Converter for Multi-Cell Input Configurations Using Si9168

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications

Special-Purpose Operational Amplifier Circuits

Lecture 3: Diodes. Amplitude Modulation. Diode Detection.

OBJECTIVE TYPE QUESTIONS


Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types.

Term Roadmap : Materials Types 1. INSULATORS

CHAPTER 8 The PN Junction Diode

Electronic Circuits I - Tutorial 03 Diode Applications I

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Homework Assignment 06

INTEGRATED CIRCUITS. AN145 NE5517/A transconductance amplifier applications Dec

The Schottky Diode Mixer. Application Note 995

Lecture 6. Angle Modulation and Demodulation

INTEGRATED CIRCUITS. AN179 Circuit description of the NE Dec

Chapter 3. Question Mar No

DATA SHEET. HEF4046B MSI Phase-locked loop. For a complete data sheet, please also download: INTEGRATED CIRCUITS

Princeton Technology Corp.

multiplier input Env. Det. LPF Y (Vertical) VCO X (Horizontal)

Figure Responsivity (A/W) Figure E E-09.

REV NO EXPERIMENT NO 1 AIM: To study the PN junction diode characteristics under Forward & Reverse bias conditions. APPARATUS REQUIRED:

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2013 SCHEME OF VALUATION

EE70 - Intro. Electronics

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET)

Chapter 2. Diodes & Applications

Sophomore Physics Laboratory (PH005/105) Analog Electronics Phase Locked Loop (PLL)

Introduction. Keywords: rf, rfdesign, rfic, vco, rfics, rf design, rf ics. APPLICATION NOTE 530 VCO Tank Design for the MAX2310.

Experiment # (3) PCM Modulator

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Fatih University Electrical and Electronics Engineering Department EEE Communications I EXPERIMENT 5 FM MODULATORS

Universitas Sumatera Utara

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

Figure Figure E E-09. Dark Current (A) 1.

ATV Modulator User Manual

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

LMC567 Low Power Tone Decoder

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

55:041 Electronic Circuits

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

XR-2206 Monolithic Function Generator

A 7ns, 6mA, Single-Supply Comparator Fabricated on Linear s 6GHz Complementary Bipolar Process

Transcription:

7-1 Experiment Topic : FM Modulator 7.1: Curriculum Objectives 1. To understand the characteristics of varactor diodes. 2. To understand the operation theory of voltage controlled oscillator (VCO). 3. To design and implement the frequency modulator by using the voltagecontrolled oscillator. 4. To design and implement the frequency modulator by using MC4046. 5. To design and implement the frequency modulator by using LM566. 7.2: Curriculum Theory 7-1 The Operation Theory of FM Modulation In frequency modulation (FM), we utilize the amplitude of audio signal to modulate the frequency of carrier signal. The transmitted high and low frequency signals will follow the received audio signal, which has different frequency that keeps on changing. The frequency modulation can be expressed as (7.1) If Then (7.2) where

7-2 : Instantaneous modulated frequency. : Carrier frequency. : Modulating frequency or audio signal frequency. : Modulation index, : Frequency deviation. Frequency deviation of FM is shown as below (7.3) From equation (7.3), we know that when the amplitude of modulating signal changes, the frequency of FM will change too, and it uses the center point of carrier frequency to achieve frequency deviation. From Carson s rule, the bandwidth (BW) of modulated signal can be expressed as If the FM signal is the largest amplitude and largest frequency (i.e. and ) then the bandwidth of FM can be simplified as 7-2 Varactor Diode Varacor diode is also called tuning diode. Varactor diode is a diode, whose capacitance can be varied by adding a reverse bias voltage to the pn junction, When reversed bias voltage increases, the depletion region becomes wide, this will cause the capacitance value decreases; nevertheless when reverse bias voltage decreases, the depletion region will be reduced. This will cause the

7-3 capacitance value increases. Varactor diode also can be varied from the amplitude of AC signal. If an AC signal is added to a varactor diode, the variation of capacitance of varactor diode will follow the amplitude of modulation signal. Figure 7-1 is the analog diagram of capacitance of varactor diode. When a varactor diode is not biased, the concentration will be differed from minor carriers at pn junction. Then these carriers will diffuse and become depletion region. The p type depletion region carries electron positive ions, and the n type depletion region carries negative ions, We can use parallel plate capacitor to represent the depletion region. Figure7-1 Analog diagram of capacitance of varactor diode. The transition capacitance pn junction of the plates can be expressed as (7.4) Where (dielectric constant of silicon). F/m A: The PN junction area. D: Depletion width

7-4 When reverse bias voltage increases, the width of depletion region d will increase but the cross-section area A remains, therefore the capacitance value would be reduced. On the other hand, the capacitance value will increase when reverse bias voltage decreases. Varactor diode can be equivalent to a capacitor in series with a resistor (Rs) and an inductor (Ls) as shown in figure 7-2. From figure 7-2, Cj is the junction capacitor of semiconductor, which only exists in pn junction, Rs is the sum of bulk resistor and contact resistor of semiconductor material, which is related to the quality of varactor diode (generally below a few ohms). Ls is the equivalent inductor of bounding wire and semiconductor material. Tuning ratio, TR is the ratio of capacitance value under two different biases for varactor diode. The expression is shown as follow Figure 7-2 Equivalent circuit diagram varactor diode. (7.5) where TR : Tuning ratio. CV1 : The capacitance value of varactor diode at V1. CV2 : The capacitance value of varactor diode at V2. From this experiment, the characteristics of the varactor diode 1SV55 is shown as below

7-5 C3v = 42 pf (The capacitance of varactor diode at bias 3V) TR = 2.65 (3V 30V) Figure 7-3 Block diagram of MC4046. 7-3 Implementation of FM Modulator by Using PLL MC4046 MC4046 is the phase-locked loop (PLL) integrated circuit. Figure 7-3 is the internal structure diagram of MC 4046. Pin 1, pin 10 and pin 15 are in N.C. mode. Pin 5 is the input of INH, which is situated in low voltage level. The VCO oscillation frequency of MC4046 is determined by the input voltage at pin 9, the capacitances at pin 6 and pin 7, the resistances at pin 11 and pin 12. Figure 7-4 is the circuit diagram of FM modulator by using MC4046. By adjusting the variable resistor VR1 (DC level), we can control the output frequency at pin 4, which is the frequency fo; capacitor C2, resistor R6 and R7 determine the oscillation frequency of f0; capacitor C2 and resistor R6 determine the maximum frequency of f0; capacitor C2 and resistor R7 determine the minimum frequency of f0, i.e. the modulation bandwidth.

7-6 Figure7-4 Circuit diagram of MC4046 FM modulator. 7-4 Implementation of FM Modulator by Using VCO LM566 LM566 is voltage-controlled oscillator integrated circuit. Figure 7-5 is the internal structure diagram of LM566. Figure 7-6 shows the circuit diagram of FM modulator by using LM566. We let SW1 be opened circuit, and the circuit is a voltage-controlled oscillator. The output signal frequency is controlled by C3, VR1 and audio signal input terminal voltage. C2 is used to eliminate parasitic oscillation. If C3 and VR1 remain a constant, then the output signal frequency and the voltage difference between pin 8 and pin 5 (V8-V5) is proportional. In other words, when input signal voltage (V5) increases, the voltage difference (V8-V5) between pin 8 and pin 5 will decrease, the output signal frequency will decrease as well. But, when input signal voltage (V5) decreases, the frequency of output signal will increase. Another factor that affects the output signal frequency is VR1 C3 value, the output signal frequency and VR1 C3 is inverse proportionally. When the VR1 C3 value is getting larger, the output signal frequency is getting lower. But when the VR1 C3 value is getting smaller then the output signal frequency is getting higher. From figure 7-6, when we short circuit SW1, then R1

7-7 and R2 provide a DC bias voltage as the DC level of input audio signal. The center frequency (fo) can be adjusted by using VR1. If audio signal input terminal is inputted with and AC signal, the VCO output signal frequency will follow the change of the input audio signal voltage, which the FM signal is deviated. Figure 7.5 Internal structure diagram of LM566. Figure 7.6 Circuit diagram of LM566 FM modulator. 7-3 Experimental Procedures Experiment 1: MC 4046 FM modulator 1. Refer to the circuit diagram in figure 7-4 or figure ACS7-1 on ETEK ACS- 3000-04 module.

7-8 2. By using oscilloscope, observe on the output signal waveforms of modulated FM signal(fm O/P). Adjust variable resistor VR1 so that the output signal is 20 khz square wave, Then record the measured results in table7-1. 3. At the audio signal input port (Audio I/P), input 300 mv amplitude and 1 khz sine wave frequency. By using oscilloscope, observe on the output signal waveforms of FM O/P, the record the measured results in table 7-2. 4. According to the input signals in table 7-2, repeat step 3 and record the measured results in table 7-2. Experiment 2: LM566 FM modulator 1. Refer to the circuit diagram in figure 7-6 or figure ACS7-2 on ETEK ACS- 3000-04 module. 2. Let J1 be short circuit, i.e. the circuit is the FM modulator. J3 be short circuit and J2 be opened circuit, i.e. the selected capacitor is C4 = 10 nf. Adjust variable resistor VR1 so that the frequency at the modulated FM output port (FM O/P) is 20 khz square wave. Then record the measured results in table 7-3. 3. At the audio signal input port (Audio I/P), input 300 mv amplitude and 1 khz sine wave frequency. By using oscilloscope, observe on the output signal waveforms of FM O/P, then record the measured results in table 7-4. 4. According to the input signals in table 7-4, repeat step 3 and record the measured results in table 7-4.

7-4: Measured Results EIE 312 7-9 Table7-1 Measured results of MC4046. FM O/P Table7-2 Measured results of MC4046 FM modulator. (f = 1 khz, Vm = 300 mv) FM O/P

7-10 Table7-2 Measured results of MC4046 FM modulator.(continue) (f = 1 khz, Vm = 300 mv) FM O/P Table7-3 Measured results of LM566. FM O/P

7-11 Table7-4 Measured results of LM566 FM modulator. (f = 1 khz, Vm = 300 mv) FM O/P Table7-4 Measured results of LM566 FM modulator. (Continue) (f = 1 khz, Vm = 300 mv) FM O/P

7-12 7-5: Discussion Questions 1. Describe the operation theory of FM modulation. 2. Explain the implementation of FM modulator by using MC4046. 3. Explain the implementation of FM modulator by using LM566.