Handbook of Optical Systems

Similar documents
J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation

Basics of INTERFEROMETRY

Handbook of Optical Systems

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Basics of INTERFEROMETRY

Metrology and Sensing

Metrology and Sensing

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA

Introduction to Imaging Spectrometers

OPTICAL IMAGING AND ABERRATIONS

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Optical Signal Processing

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch>

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Index. b beam quality 951 f beam-stop 86 beat frequency 492 Beer s law 851 bidirectional reflectance distribution function (BRDF) 166, 795 ff

Testing Aspheric Lenses: New Approaches

Optical Design with Zemax

Exercise 8: Interference and diffraction

3.0 Alignment Equipment and Diagnostic Tools:

Solution of Exercises Lecture Optical design with Zemax Part 6

Index. Optical Shop Testing, Third Edition Edited by Daniel Malacara Copyright # 2007 John Wiley & Sons, Inc.

WaveMaster IOL. Fast and accurate intraocular lens tester

Explanation of Aberration and Wavefront

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

Study the Effect of Lens Monochromatic Aberrations on Satellite Images Quality

Metrology and Sensing

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

Master program "Optical Design"

Collimation Tester Instructions

Use of Computer Generated Holograms for Testing Aspheric Optics

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Optical Design with Zemax for PhD

instruments Solar Physics course lecture 3 May 4, 2010 Frans Snik BBL 415 (710)

IAC-08-C1.8.5 OPTICAL BEAM CONTROL FOR IMAGING SPACECRAFT WITH LARGE APERTURES

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Adaptive Optics for LIGO

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT

Understanding Optical Specifications

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

Metrology and Sensing

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

LEOK-3 Optics Experiment kit

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Testing Aspherics Using Two-Wavelength Holography

USE OF COMPUTER- GENERATED HOLOGRAMS IN OPTICAL TESTING

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Aberrations and adaptive optics for biomedical microscopes

Observational Astronomy

In-line digital holographic interferometry

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

06SurfaceQuality.nb Optics James C. Wyant (2012) 1

The Fiber-Optic Gyroscope

Medical Photonics Lecture 1.2 Optical Engineering

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces

Section 2 ADVANCED TECHNOLOGY DEVELOPMENTS

Dynamic beam shaping with programmable diffractive optics

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Computer Generated Holograms for Optical Testing

Optical Design with Zemax for PhD - Basics

Chapter Ray and Wave Optics

Principles of Optics for Engineers

Design and Correction of optical Systems

Wavefront sensing by an aperiodic diffractive microlens array

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

SPIE Volume 472 PRECISION OPTICAL GLASSWORKING. A manual for the manufacture, W. Zschommler. Glasbearbeitung (Werkkiinde fur den Feinoptiker)

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Sensitive measurement of partial coherence using a pinhole array

Why is There a Black Dot when Defocus = 1λ?

Big League Cryogenics and Vacuum The LHC at CERN

1.6 Beam Wander vs. Image Jitter

Photonic Signals. and Systems. An Introduction. NabeelA.Riza/Ph.D. Department of Electrical and Electronic Engineering University College Cork

Astro 500 A500/L-20 1

SpotOptics. The software people for optics OPAL O P A L

Interference [Hecht Ch. 9]

GENERALISED PHASE DIVERSITY WAVEFRONT SENSING 1 ABSTRACT 1. INTRODUCTION

Wavefront Sensing In Other Disciplines. 15 February 2003 Jerry Nelson, UCSC Wavefront Congress

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

The Extreme Adaptive Optics test bench at CRAL

Fiber-Optic Communication Systems

Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

The Mathematics of Geometrical and Physical Optics

Vision Research at. Validation of a Novel Hartmann-Moiré Wavefront Sensor with Large Dynamic Range. Wavefront Science Congress, Feb.

PhD Thesis. Balázs Gombköt. New possibilities of comparative displacement measurement in coherent optical metrology

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8

Exam Preparation Guide Geometrical optics (TN3313)

Optics and photonics Preparation of drawings for optical elements and systems. Part 5: Surface form tolerances

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI)

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

OPAL. SpotOptics. AUTOMATED WAVEFRONT SENSOR Single and double pass O P A L

Transcription:

Handbook of Optical Systems Volume 5: Metrology of Optical Components and Systems von Herbert Gross, Bernd Dörband, Henriette Müller 1. Auflage Handbook of Optical Systems Gross / Dörband / Müller schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG WILEY-VCH 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 40381 3

XI Preface XIX Introduction XXI 46 Interferometry 1 46.1 Introduction 3 46.2 Basic Principles of Interference 4 46.2.1 Plane Wave 6 46.2.2 Complex Notation 7 46.2.3 Spherical Wave 8 46.2.4 Vector Sum of Complex Numbers 9 46.2.5 Interference of Two Plane Waves 12 46.2.6 Interference of Two Spherical Waves 14 46.2.7 Interference of Two Waves with Different Wavelengths 18 46.2.8 Coherence and Correlation Function 19 46.2.9 Interference of Two Monochromatic Waves with Statistically Varying Phase 20 46.2.10 Interference of two waves which have a spectrum 21 46.2.11 Interference with Extended Monochromatic Light Sources 27 46.2.12 Interference of Waves having Different Polarization 31 46.2.13 Interference of Non-spherical Wavefronts 33 46.2.14 Interference at Two Plane Parallel Interfaces 37 46.2.15 Haidinger Fringes 40 46.2.16 Newton Fringes 43 46.3 Interferometers 44 46.3.1 Newton Interferometer 45 46.3.2 Fizeau Interferferometer 49 46.3.3 Twyman Green Interferometer 56 46.3.4 Mach Zehnder Interferometer 62 46.3.5 Point Diffraction Interferometer 67 46.3.6 Shearing Interferometer 72 46.4 Interferometer Designs 81 46.4.1 General Requirements 81 Handbook of Optical Systems: Vol. 5. Metrology of Optical Components and Systems. First Edition. Edited by Herbert Gross. Copyright 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.

XII 46.4.2 Definition of Optical Components and Subassemblies 84 46.5 Detection Techniques and Algorithms 95 46.5.1 General Considerations 95 46.5.2 Least-squares Phase Detection 95 46.3.3 Error Sources 97 46.3.4 Phase-shifting Interferometry 98 46.3.5 Spatial Carrier Frequency Analysis 107 46.3.6 Simultaneous phase-shifting interferometry 112 46.3.7 Unwrapping 114 46.6 Calibration Techniques 120 46.6.1 Reference Elements with Known Residual Error 121 46.6.2 Calibration Procedures Used to Determine Element Deviations 122 46.7 Dynamic Range 140 46.7.1 DR in Surface Topometry 140 46.7.2 Dynamic Range of CCD Sensors in Interferometry and Wavefront Sensing 142 46.7.3 Lateral DR of CCD Sensors in Interferometry and Wavefront Sensing 143 46.7.4 Stitching Technique Used to Extend Lateral DR 145 46.8 Accuracy and Error Sources 148 46.8.1 Environmental Limitations 148 46.8.2 Noise 161 46.8.3 Capability of Measurement Systems 168 46.8.4 Gauge R&R Analysis Analysis of Repeatability and Reproducibility 170 46.9 Literature 175 47 Non-interferometric Wavefront Sensing 181 47.1 Introduction 183 47.2 Hartmann Shack Sensor 183 47.2.1 Principle of the HS Sensor 183 47.2.2 Basic Setup 187 47.2.3 Telescope for Diameter Adaptation 189 47.2.4 Detector Relay Lens 190 47.2.5 Layout of a Sensor 190 47.2.6 Signal Processing 193 47.2.7 Dynamic Range 194 47.2.8 Subaperture Effects 195 47.2.9 Accuracy of the HS Sensor 201 47.2.10 Modified Setups and Algorithmic Extensions of the Sensor 205 47.2.11 Comparison with Interferometer Setup 207 47.3 Hartmann Sensor 208 47.3.1 Introduction 208 47.3.2 Accuracy of the Hartmann Method 214 47.3.3 Partial Coherent Illumination and Apodization 216

XIII 47.3.4 Hartmann Measurement of an Apodized Profile 218 47.3.5 Modified Hartmann Methods 218 47.4 Phase Space Analyzer 219 47.4.1 Introduction 219 47.4.2 Layout Versions 222 47.4.3 Evaluation of the Data 225 47.4.4 Wave Optical Description 227 47.5 Point Image Filtering Techniques 230 47.6 Other Wavefront Sensor Concepts 239 47.6.1 Pyramid Curvature Sensor 239 47.6.2 Hartmann Moire Wavefront Sensor 240 47.6.3 Holographic Modal Wavefront Sensor 240 47.6.4 Convolution Solvable Pinhole Mask 241 47.6.5 Talbot Moire Interferometer 244 47.7 Point Spread Function Retrieval 249 47.7.1 Introduction 249 47.7.2 Transport of Intensity Equation 249 47.7.3 Principle of Phase Retrieval 251 47.7.4 Experimental Settings 253 47.7.5 Model Assumptions 258 47.7.6 Image Processing 262 47.7.7 Pinhole Deconvolution 267 47.7.8 Numerical Evaluation Algorithms 270 47.7.9 Apodization 274 47.7.10 Object Space Defocusing 275 47.7.11 Accuracy of Phase Retrieval 278 47.8 Calculation of Wavefront and Zernike Coefficients 283 47.8.1 Introduction 283 47.8.2 Zonal Methods 284 47.8.3 Modal Methods 285 47.8.4 Modal Fourier Reconstruction 286 47.8.5 Direct Determination of Zernike Coefficients from Slope Measurements 287 47.8.6 Calculating the Zernike Coefficients of a Wavefront 288 47.8.7 Zernike Calculation via Fourier Transform 290 47.8.8 Influence of Normalization Radius on Zernike Coefficients 291 47.8.9 Change in the Zernikes for Decentered, Rotated and Stretched Pupils 292 47.8.10 Propagation Changes in the Zernike Coefficients 294 47.9 Literature 297 48 Radiometry 303 48.1 Introduction 304 48.2 Basic Principles of Radiometry 305 48.2.1 Energy Transport by Electromagnetic Fields 305

XIV 48.2.2 Radiometric and Photometric Quantities 308 48.2.3 Fundamentals of Radiation Transfer 321 48.2.4 Fundamentals of Flux Detection 338 48.3 Monochromators 341 48.3.1 Introduction 341 48.3.2 Optical Absorption Filters 342 48.3.3 Fabry PØrot Etalons 349 48.3.4 Interference Filters 352 48.3.5 Electronically Tunable Filters 359 48.3.6 Prism Monochromators 375 48.3.7 Grating Monochromators 387 48.4 Spectrometers 402 48.4.1 Introduction 402 48.4.2 Basic Principles of Spectrometers 403 48.4.3 Single-Channel Spectrometers 405 48.4.4 Multi-channel Spectrometers 408 48.4.5 Fourier Spectrometers 411 48.4.6 Accuracy and Error Sources 420 48.4.7 Calibration Techniques 423 48.5 Literature 427 49 Image Analysis 431 49.1 Introduction 432 49.2 Basic Principles of Image Analysis 432 49.2.1 System Setup 432 49.2.2 Calibration Principles 435 49.3 Star Test, Slit Test 436 49.3.1 Basic Setups 436 49.3.2 Image Deconvolution 443 49.3.3 Calibration 446 49.3.4 Accuracy and Error Sources 447 49.4 Test Targets, Visual Inspection 450 49.5 Distortion Metrology 452 49.5.1 Basic Setups 452 49.5.2 Correlation Method 456 49.5.3 Calibration 463 49.5.4 Accuracy and Error Sources 463 49.6 Deflectometers 464 49.6.1 Basic Setups 464 49.6.2 Algorithms 469 49.6.3 Calibration 469 49.6.4 Accuracy and Error Sources 470 49.7 Pattern and Fringe Projectors 471 49.7.1 Basic Setups 471 49.7.2 Algorithms 479

XV 49.7.3 Calibration 479 49.7.4 Accuracy and Error Sources 482 49.8 Literature 485 50 Distance and Angle Metrology 489 50.1 Introduction 490 50.2 Long-range Displacement Metrology 490 50.2.1 Displacement-measuring Interferometer 490 50.2.2 Low-coherence Interferometers 499 50.2.3 Femtosecond Frequency Combs 504 50.2.4 Linear Encoders 510 50.3 Short-range Displacement and Thickness Metrology 515 50.3.1 Triangulators 515 50.3.2 Confocal Sensors 517 50.3.3 Coaxial Interferometric Sensors 520 50.4 Angle and Tilt Metrology 524 50.4.1 Angle Encoders 524 50.4.2 Autocollimators 528 50.4.3 Surface-measuring Interferometers 532 50.4.4 Differential Heterodyne Laser Interferometer 534 50.5 Combined Distance and Angle Metrology 540 50.5.1 Theodolites and Total Stations 541 50.5.2 Laser Trackers 544 50.6 Optical Profile Metrology 548 50.6.1 CMMs with Optical Sensors 548 50.6.2 Devices Using Angle Sensors 550 50.7 Literature 555 51 Polarimetry 559 51.1 Introduction 560 51.2 Basic principles of Polarimetry 561 51.2.1 Jones Calculus 561 51.2.2 Stokes/Mueller Calculus 568 51.3 Polarizing Elements 572 51.3.1 Polarizers 572 51.3.2 Retarders 582 51.3.3 Compensators 589 51.3.4 Depolarizers 591 51.3.5 Jones and Mueller Matrix Representations of Selected Optical Components 593 51.4 Polarimeters 597 51.4.1 Measurement of the Jones vector 597 51.4.2 Measurement of the Stokes Vector 600 51.4.3 Measurement of the Jones Matrix 605 51.4.4 Measurement of the Mueller Matrix 616

XVI 51.4.5 Polarimeters and Ellipsometers 622 51.5 Calibration Techniques 633 51.6 Accuracy and Error Sources 635 51.7 Literature 641 52 Testing the Quality of Optical Materials 643 52.1 Specifications 644 52.2 Refractive Index 644 52.2.1 Basics 644 52.2.2 Metrology 646 52.3 Transmittance 651 52.3.1 Basics 651 52.3.2 Metrology 652 52.4 Inhomogeneity and Striae 655 52.4.1 Basics 655 52.4.2 Metrology 658 52.5 Birefringence 664 52.5.1 Basics 664 52.5.2 Metrology 666 52.6 Bubbles and Inclusions 673 52.6.1 Basics 673 52.6.2 Metrology 676 52.7 Literature 677 53 Testing the Geometry of Optical Components 679 53.1 Specifications 680 53.2 Radius of Curvature 681 53.2.1 Basics 681 53.2.2 Metrology 682 53.3 Central Thickness 689 53.3.1 Basics 689 53.3.2 Metrology 689 53.4 Surface Form and Figure Irrigularities 694 53.4.1 Basics 694 53.4.2 Metrology 707 53.5 Centering 760 53.5.1 Basics 760 53.5.2 Metrology 765 53.6 Diameter and Chamfer 776 53.6.1 Basics 776 53.6.2 Metrology 777 53.7 Literature 779

XVII 54 Testing Texture and Imperfections of Optical Surfaces 785 54.1 Specifications 786 54.2 Surface Texture 786 54.2.1 Basics 786 54.2.2 Metrology 796 54.3 Surface Imperfections 823 54.3.1 Basics 823 54.3.2 Metrology 826 54.4 Literature 836 55 Testing the Quality of Coatings 839 55.1 Introduction 840 55.2 Specifications 844 55.3 Model Simulation 847 55.3.1 Transfer-matrix Method 847 55.3.2 Material Designation 851 55.3.3 Graded Interfaces 852 55.3.4 Surface Roughness 854 55.3.5 Data Analysis 855 55.4 Coating Metrology 858 55.4.1 Basics 859 55.4.2 Spectral Transmittance 861 55.4.3 Spectral Reflectance 866 55.4.4 Spectral Absorptance 875 55.5 Literature 878 56 System Testing 881 56.1 Introduction 883 56.1.1 System Measurement 883 56.1.2 Description of System Performance 883 56.1.3 Specifications 884 56.2 Basic Parameters of Optical Systems 887 56.2.1 Focal Length 887 56.2.2 Focus and Image Location 892 56.2.3 Principal Planes 898 56.2.4 Magnification 900 56.2.5 Pupil Location and Aperture Size 901 56.2.6 Telecentricity 905 56.2.7 Lens Positions and Adjustment 907 56.2.8 Centering 910 56.3 Measurement of Image Quality 912 56.3.1 Wavefront Quality 912 56.3.2 Point Spread Function PSF 914 56.3.3 Axial Point Spread Function 918 56.3.4 Edge Spread Function ESF 919

XVIII 56.3.5 Line Spread Function LSF 923 56.3.6 Analysis of Image Degradations 926 56.3.7 Distortion 929 56.3.8 Chromatical Aberrations 929 56.4 Measurement of the Transfer Function 930 56.4.1 Introduction 930 56.4.2 Test Targets 932 56.4.3 Measurement of the MTF via the Edge Spread Function 933 56.4.4 Measurement of the MTF via the Line Spread Function 936 56.4.5 Grating Imaging Measurement Setup 936 56.4.6 Measurement of the Pupil Autocorrelation Function 939 56.4.7 Special Measurement Aspects 940 56.4.8 Image Quality Criteria Based on the Transfer Function 941 56.5 Miscellaneous System Properties 945 56.5.1 Transmission 945 56.5.2 Spectral Transmission 947 56.5.3 Illumination Distribution 948 56.5.4 Ghost Images and Veiling Glare 950 56.5.5 M 2 Beam Quality and Kurtosis 951 56.5.6 Polarization Aberrations 954 56.6 Literature 960 Index 967