MT6801 Magnetic Rotary Encoder IC

Similar documents
MT6804 Magnetic Rotary Encoder IC

MT6803 Magnetic Angle Sensor IC

MT6815 Magnetic Rotary Encoder IC

MT6501 Magnetic Angle Sensor IC

MT6813 Magnetic Rotary Encoder IC

MT6501. Features and Benefits. General Description. Applications. Magnetic Angle Position Sensor. Based on advanced AMR Sensing Technology

Data Sheet. AEAT-6600-T16 10 to16-bit Programmable Angular Magnetic Encoder IC. Description. Features. Specifications.

10-bit Absolute Magnetic Rotary Encoder

MT6325 Series Omni-polar, Low Power, MR Switch Sensor

MT4106-EN Series Uni-polar, Hall-Effect Magnetic Position Sensors

AS Bit 360 Programmable Magnetic Rotary Encoder. 1 General Description. 2 Key Features. 3 Applications. Benefits.

MT6303 Series Omni-polar, Low Power, MR Switch Sensor

High-Voltage High-Current Stepper Motor Driver IK6019A TECHNICAL DATA

Data Sheet. AEDT-9340 Series High Temperature 115 C 1250/2500 CPR 6-Channel Commutation Encoder. Description. Features.

AS5304 / AS5306 Integrated Hall ICs for Linear and Off-Axis Rotary Motion Detection

AEAT-8800-Q24. Magnetic Encoder IC 10- to 16-Bit Programmable Angular Magnetic Encoder. Data Sheet. Description. Key Features.

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

MT1401A-T Flat TO-92 package, Radial lead, bulk packaging (1000pcs/bag)

CYD8945 High Reliability Hall Effect Switch IC

Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications

SS1350 Unipolar Hall Switch-Low Sensitivity

Figure 1: Functional Block Diagram

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1

SGM ns, Low-Power, 3V/5V, Rail-to-Rail Input Single-Supply Comparator

Data Sheet. AEAS Ultra-Precision 16 bit Gray Code Absolute Encoder Module. Description. Functional Description. Features. Background.

EC35. Optical Commutation Kit Encoder Page 1 of 7. Description. Mechanical Drawing. Features

Single-Phase Full-Wave Motor Driver with Built-in Hall Sensor. General Description

ICS558A-02 LVHSTL TO CMOS CLOCK DIVIDER. Description. Features. Block Diagram DATASHEET

IDT9170B CLOCK SYNCHRONIZER AND MULTIPLIER. Description. Features. Block Diagram DATASHEET

AS Bit Programmable Magnetic Rotary Encoder. 3 Key Features. 1 General Description. 2 Benefits. 4 Applications. Data Sheet

FAN7191-F085 High-Current, High and Low Side Gate Drive IC

MK1413 MPEG AUDIO CLOCK SOURCE. Features. Description. Block Diagram DATASHEET

EUP A Ultra Low-Dropout Linear Regulator FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit. 1

Features. Applications. Plastic Housing. Sensor PCB Assembly. Plastic Hub. Plastic Base Plate. 2 x screws

MagAlpha MA820 8-Bit Contactless Angle Encoder with ABZ Output and Push Button Function

- Industrial applications such as: - Motion control - Robotics - Brush-less DC motor commutation - Hand tools. - Automotive applications:

Data Sheet. AEDS-9240 Series 360/720 CPR Commutation Encoder Module. Features. Description. Applications

AH5794 SINGLE PHASE HALL EFFECT LATCH FAN MOTOR DRIVER. Description. Pin Assignments NEW PRODUCT. Applications. Features. (Top View) O2 3 V SS TSOT26

ICS542 CLOCK DIVIDER. Features. Description. Block Diagram DATASHEET. NOTE: EOL for non-green parts to occur on 5/13/10 per PDN U-09-01

ICS2304NZ-1 LOW SKEW PCI/PCI-X BUFFER. Description. Features. Block Diagram DATASHEET

CMOS Serial Digital Pulse Width Modulator INPUT CLK MODULATOR LOGIC PWM 8 STAGE RIPPLE COUNTER RESET LOAD FREQUENCY DATA REGISTER

RT A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. Features. General Description. Applications. Ordering Information

codestrip, these modules detect relative linear position.

SGM330A Quad, Wide-Bandwidth SPDT Video Analog Switch

ICS660 DIGITAL VIDEO CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

Dual Channel Sensitive Hall Effect Switch CYD8536. With Quadrature Outputs

MagAlpha MA120 Angular Sensor for Brushless Motor Commutation

SS1636 Unipolar Hall Switch-High sensitivity

ICS NETWORKING AND PCI CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

Data Sheet. AEDx-8xxx-xxx 2- or 3-Channel Incremental Encoder Kit with Codewheel. Description. Features. Assembly View. Housing.

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

MT1531 Series. CMOS, Programmable Linear Hall Effect Sensor. Features. Applications. 1 / 15

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM

MK SPREAD SPECTRUM MULTIPLIER CLOCK. Description. Features. Block Diagram DATASHEET

EUP A Ultra Low-Dropout Linear Regulator DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

ICS553 LOW SKEW 1 TO 4 CLOCK BUFFER. Description. Features. Block Diagram DATASHEET

MK SPREAD SPECTRUM MULTIPLIER CLOCK. Description. Features. Block Diagram DATASHEET

Data Sheet AS25/AS50. Absolute / Incremental Singleturn Encoder 18 Bit

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description.

PCI-EXPRESS CLOCK SOURCE. Features

1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10 (0.070 ± 0.004) 2.92 ± 0.10 (0.115 ± 0.004) (0.400)

ICS HDTV AUDIO/VIDEO CLOCK SOURCE. Features. Description. Block Diagram DATASHEET

HI-3000H, HI-3001H. 1Mbps Avionics CAN Transceiver with High Operating Temperature. PIN CONFIGURATIONS (Top Views) GENERAL DESCRIPTION FEATURES

SINGLE PHASE HALL EFFECT LATCH SMART FAN MOTOR CONTROLLER

Dual-Axis, High-g, imems Accelerometers ADXL278

SM712 Series 600W Asymmetrical TVS Diode Array

Figure 1: Functional Block Diagram

FAN7371 High-Current High-Side Gate Drive IC

SGM2551A/SGM2551C Precision Adjustable Current Limited Power Distribution Switches

Single-Axis, High-g, imems Accelerometers ADXL193

High Sensitivity Differential Speed Sensor IC CYGTS9625

LOW SKEW 1 TO 4 CLOCK BUFFER. Features

ICSSSTV DDR 24-Bit to 48-Bit Registered Buffer. Integrated Circuit Systems, Inc. Pin Configuration. Truth Table 1.

ICS571 LOW PHASE NOISE ZERO DELAY BUFFER. Description. Features. Block Diagram DATASHEET

Microprocessor Supervisory Circuit ADM1232

ICS663 PLL BUILDING BLOCK. Description. Features. Block Diagram DATASHEET

AS5045B. Key Benefits & Features. Simple user-programmable zero position and settings

TC4421/TC A High-Speed MOSFET Drivers. General Description. Features. Applications. Package Types (1)

ICS2510C. 3.3V Phase-Lock Loop Clock Driver. Integrated Circuit Systems, Inc. General Description. Pin Configuration.

Features. Applications

RTQ2516-QT. 2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. General Description. Features. Applications. Ordering Information

Triple Processor Supervisors ADM13307

Features. Applications

CMOS Serial Digital Pulse Width Modulator INPUT CLK MODULATOR LOGIC PWM 8 STAGE RIPPLE COUNTER RESET LOAD FREQUENCY DATA REGISTER

AT2596 3A Step Down Voltage Switching Regulators

ICS LOW SKEW 2 INPUT MUX AND 1 TO 8 CLOCK BUFFER. Features. Description. Block Diagram INA INB SELA

HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1

Octal, RS-232/RS-423 Line Driver ADM5170

RT A, Ultra Low Dropout LDO. General Description. Features. Applications. Pin Configurations. Ordering Information RT9025-

INL PLOT REFIN DAC AMPLIFIER DAC REGISTER INPUT CONTROL LOGIC, REGISTERS AND LATCHES

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

GMW. Integrated 2-Axis Hall Sensor

AT7450 2A-60V LED Step-Down Converter

Data Sheet. AEAT-601B Incremental Magnetic Encoder. Description. Features. Exploded View. Applications

MT4412 Series Bipolar Hall-Effect Sensor with Pull-up Resistor

Discontinued Product

FAN7391 High-Current, High & Low-Side, Gate-Drive IC

SGM9111 8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information RT9059(- )

PI5V330A. Low On-Resistance Wideband/Video Quad 2-Channel Mux/DeMux. Features: Description. Pin Diagram. Block Diagram. Pin Description.

Transcription:

Features and Benefits Based on advanced magnetic field sensing technology Measures magnetic field direction rather than field intensity Non-contacting angle measurement Large air gap Excellent accuracy, even for weak magnetic field Position tolerant Single chip solution User programmable resolution & zero / index position RoHS Compliant 2011/65/EU Applications Replacement of optical encoders Robotics control BLDC motor commutation Power tools General Description The MagnTek rotary position sensor MT6801 is an IC based on advanced magnetic field sensing technology. The sensor contains two Wheatstone bridges formed by a magnet field sensing element array. A rotating magnetic field in the x-y sensor plane delivers two sinusoidal output signals indicating the angle (α) between the sensor and the magnetic field direction. Within a homogeneous field in the x-y plane, the output signals are relatively independent of the physical placement in the z direction (air gap). The sensor is only sensitive to the magnetic field direction as the sensing element output is specially designed to be independent from the magnet field strength. This allows the device to be less sensitive to magnet variations, stray magnetic fields, air gap changes and off-axis misalignment. Three incremental output modes are available in this sensor series, making the chip suitable to replace various optical encoders. www.magntek.de 1/ 9

Pin Configuration Figure 1: Pin Configuration for SOP-8 Package, Showing Zero Degree Position Name Number Type Description MODE 1 Digital input Connect to logic low for normal operation; Connect to logic high for I 2 C mode. NSP 2 Digital input or Optional magnetic switch input or linear output Analog output GND 3 Ground Ground VDD 4 Supply 5V supply Z/W/Index 5 Digital output Z or W or Index output HVPP 6 Supply 7.5 supply only needed for NVM programming. NC for normal operation. B/V/Dir/SCL 7 Digital I/O B or V or Dir output or I 2 C clock A/U/Step/SDA 8 Digital I/O A or U or Step output or I 2 C data Family Members Part number Description MT6801CT-XYZ SOP-8 package, tape and reel packaging (3000pcs/bag) MTT6801CT-XYZ Automotive requirement apply, SOP-8 package, tape and reel packaging (3000pcs/bag) X: Output type, A=ABZ, U=UVW Y (ABZ or SDI mode): Resolution, 8=8-bit, 9=9-bit, A=10-bit, B=11-bit, C=12-bit Y (UVW mode): Number of pulses per rotation, 2=2-pulse, 4=4-pulse, 6=6-pulse, H=16-pulse Z: Options, D=default, V=output inverted, H=MS input enabled, L=linear output enabled www.magntek.de 2/ 9

Functional Description The MT6801 is manufactured in a CMOS standard process and uses advanced magnet sensing technology to sense the magnetic field distribution across the surface of the chip. The integrated magnetic sensing element array is placed around the center of the device and delivers a voltage representation of the magnetic field at the surface of the IC. Figure 2 shows a simplified block diagram of the chip, consisting of the magnetic sensing element realized by two interleaved Wheatstone bridges to generate cosine and sine signals, gain stages, analog-to-digital converters (ADC) for signal conditioning, and a digital signal processing (DSP) unit for encoding. Other supporting blocks such as LDO, etc. are also included. A small low cost diametrically magnetized (two-pole) standard magnet can be used to provide angular position information. The MT6801 senses the rotation and orientation of the magnetic field and generates incremental outputs. The following 3 incremental output modes are available. Figure 2: Simplified System Block Diagram Quadrature A/B and Zero-position output signal As depicted in Figure 3, when the magnet rotates clock-wise (CW), output A leads output B by 1/4 cycle (or 1 LSB); When the magnet rotates counter-clock-wise (CCW), output B leads output A by 1/4 cycle. Output Z indicates the zero position of the magnet and has a pulse width of 1 LSB. Its position can be programmed to align with the mechanical zero position. The hysteresis size is set to 0.5 LSB. Step / Direction and Index output signal In this mode, output Step has a pulse width of 1 LSB; Output Dir indicates the direction of the magnet rotation; Output Index is the same as output Z in Quadrature A/B mode. www.magntek.de 3/ 9

Quad A/B Mode CW Mechanical Zero Position Rotation Direction Change Mechanical Zero Position CCW A B Hyst Z/Index 1LSB Step / Dir Mode Step Dir CW CCW MODE t dv t iov Figure 3: Typical Output Waveform for A/B/Z and Step/Dir/Index mode 3-phase Commutation for Brushless DC Motors (U/V/W) As depicted in Figure 4, output U, V and W are 120 degrees (electrical) out of phase. The number of pulses per rotation can be programmed to 2, 4, 6 or 16. Pin-out definition varies with the number-of-pulse selection as follows. Number-of-pulse U V W 2, 6, 16 Pin 8 Pin 7 Pin 5 4 Pin 5 Pin 7 Pin 8 Figure 4: Typical Output Waveform for U/V/W mode www.magntek.de 4/ 9

Absolute Maximum Ratings (Non-Operating) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Parameter Notes Min Max Unit DC voltage at pin VDD - -0.3 8 V DC voltage at pin HVPP - -0.3 8 V Storage temperature - -55 160 C Operating Temperature - -40 150 C Electrostatic discharge (HBM) Norm: AEC-Q100-2 - ± 4 kv Electrical Characteristics Operating conditions: Ta= -40 to +150 C, VDD= 3.0-5.5V unless otherwise noted. Symbol Parameter Conditions/Notes Min Typ Max Unit VDD Supply Voltage - 3.0 5 5.5 V HVPP Supply Voltage - 7.25 7.5 7.75 V Idd Supply Current - - 3.0 4.0 ma LSB 8-bit - 1.406 - Degrees LSB 9-bit - 0.703 - Degrees LSB Resolution 10-bit - 0.352 - Degrees LSB (ABZ or SDI mode) 11-bit - 0.176 - Degrees LSB 12-bit - 0.088 - Degrees INL Integral Non-Linearity Note (1) - ±1 ±1.5 Degrees DNL Differential Non-Linearity 8, 9, 10-bit - - ±0.1 LSB (ABZ mode) 11, 12-bit - - ±0.5 LSB ABZ 8, 9, 10-bit or TN Transition Noise UVW mode - - 0.011 Deg-rms ABZ 11, 12-bit - - 0.004 Deg-rms Hyst Hysteresis 8, 9-bit - 0.5 - LSB (ABZ mode) 10, 11, 12-bit - 0.75 - LSB T PwrUp Power-up Time - - - 1.1 ms T delay ABZ 8, 9, 10-bit or Propagation Delay UVW mode - 160 200 μs ABZ 11, 12-bit - 1100 1140 μs Digital I/O Characteristics (Push-Pull Type in Normal Mode) V IH High level input voltage - VDD-1 - - V V IL Low level input voltage - - - 0.8 V V OH High level output voltage I OH =4.1mA VDD-1 - V www.magntek.de 5/ 9

V OL Low level output voltage I OL =3.3mA - - 0.4 V I LK Input Leakage Current - - - ±1 μa Timing Specifications t iov Incremental Output Valid Time - - - 1 μs t dv Dir Signal Valid Time - - - 10 μs Notes: (1) The typical error value can be achieved at room temperature and with no off-axis misalignment error. The max error value can be achieved over operation temperature range, at maximum air gap and with worst-case off-axis misalignment error. Figure 5: Drawing illustrating INL, DNL and TN (for 10-bit case) Magnetic Input Specification Operating conditions: Ta= -40 to +150 C, VDD= 3.0-5.5V unless otherwise noted. Two-pole cylindrical diametrically magnetized source. Symbol Parameter Notes Min Typ Max Unit Dmag Diameter Recommended magnet: Ø8mm x 2.5mm for cylindrical magnets - 8 - mm Tmag Thickness - - 2.5 - mm Bpk Magnetic input field amplitude Measured at the IC surface. 300-3000 Gauss AG Air Gap Magnet to IC surface distance (Figure 6). 1.0-3.0 mm 8, 9, 10-bit resolution RS Rotation Speed or UVW mode - - 15 KRPM 11, 12-bit resolution - - 7 KRPM www.magntek.de 6/ 9

DISP Displacement Radius Misalignment error between sensor center and magnet axis (Figure 6). - - 0.3 mm TCmag1 TCmag2 Recommended magnet material and temperature drift NdFeB (Neodymium Iron Boron) SmCo (Samarium Cobalt) - - -0.12-0.035 - - %/ C Figure 6: Magnet Arrangement Application Information Reference Circuit Figure 7 shows a reference circuit for typical applications. A ferrite bead (FB1) and a TVS diode (D1) are added for supply transient protection and filtering. For applications where heavy resistive or capacitive load need to be driven, it is recommended that external driver composed of transistors be added at the outputs. The reference circuit shown also applies to applications that use SDI or UVW output, where pin assignment may differ (please refer to the previous section for details). Figure 7: Reference Application Circuit www.magntek.de 7/ 9

Magnet Selection and Placement It is recommended that the magnetic field density at the chip surface reaches 300 Gauss to guarantee that the magnetic sensing elements operate in saturation mode to ensure good linearity. Please be noted that the sensing element in the chip is not at the package center, rather it is aligned with PIN 3 and 6 edges (see the figures in the Package Information section). It is required that the magnet s center axis be aligned with the sensing element center. Any misalignment introduces additional angle error. Magnets with larger radius are more tolerant to off-axis misalignment. It also allows the magnet to be placed at the large air gap distance from the chip. Programming MT6801 can be programmed through dedicated programmer PB02 with its companion GUI software. The following parameters can be programmed: resolution, output mode, zero position, external MS input and optional linear output. Notes on Zero/Index Signal The magnetic sensing element used in the IC has a period of 180 degrees, which means two Zero/Index pulses are generated for every magnet rotation, at 0 and 180 degree respectively. For applications that require only one Zero/Index pulse, an external magnetic switch sensor can be added to meet the requirement. Please contact Magntek s technical support team for further assistance. Optional Linear Output For applications that need to obtain the absolute angle position of the magnet at power-up, an optional linear output is available to achieve this goal. MT6801 can be programmed to put out an analog voltage that is proportional to the angle position on NSP pin. For more details about how to use the linear output, please contact Magntek s technical support team. Delay-Induced Angle Error Sampling and signal processing introduce propagation delay in the chip, which can cause angle error for a continuously rotating magnet. The amount of angle error induced is proportional to the rotation speed Spd (in rpm) and delay time T delay (in seconds). For example, a delay time of 100 us at a rotation speed of 1000 rpm leads to 0.6 degrees of error. The general formula is as follows. e 6 Spd T If the speed is steady and the delay is known, this error is predictable, hence can be compensated in the controller stage in the system. www.magntek.de 8/ 9

PACKAGE DESIGNATOR (MT6801CT) SOP-8 D b c L1' A A1 A2 E1 E L1 L e Symbol Dimensions in Millimeters Dimensions in Inches Min Max Min Max A 1.595 1.775 0.063 0.070 A1 0.050 0.150 0.002 0.006 A2 1.350 1.550 0.053 0.061 b 0.375 0.425 0.015 0.017 c 0.170 0.250 0.007 0.010 D 4.700 5.100 0.185 0.200 E 3.875 3.925 0.153 0.155 E1 5.800 6.200 0.228 0.244 e 1.270(BSC) 0.050(BSC) L 0.615 0.765 0.024 0.030 L1 1.040REF 0.041REF L1-L1-0.120-0.005 x 0.860 0.034 y 1.900 1.950 0.075 0.077 z 0.526 0.609 0.021 0.024 θ 0 8 0 8 www.magntek.de 9/ 9