Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers

Similar documents
Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Opto-VLSI-based reconfigurable photonic RF filter

Dynamic optical comb filter using opto-vlsi processing

Opto-VLSI-Based Broadband True-Time Delay Generation for Phased Array Beamforming

Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors

Tunable Photonic RF Signal Processor Using Opto-VLSI

Opto-VLSI based Broadband Reconfigurable Optical Add-Drop Multiplexer

Photonic Microwave Filter Employing an Opto- VLSI-Based Adaptive Optical Combiner

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Photonic Microwave Signal Processing Based on Opto-VLSI Technology

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

A novel tunable diode laser using volume holographic gratings

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

MULTIFREQUENCY CONTINUOUS WAVE ERBIUM DOPED FIBER NON-RESONANT OPTICAL SOURCE

FIBER OPTICAL PARAMETRIC OSCILLATOR WITH SWITCHABLE AND WAVELENGTH-SPACING TUN- ABLE MULTI-WAVELENGTH

Multiwavelength and Switchable Erbium-Doped Fiber Lasers

Dynamic Opto-VLSI lens and lens-let generation with programmable focal length

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

High order cascaded Raman random fiber laser with high spectral purity

Tunable single frequency fiber laser based on FP-LD injection locking

A WDM passive optical network enabling multicasting with color-free ONUs

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

Single-longitudinal mode laser structure based on a very narrow filtering technique

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

Photonic-based multi-wavelength sensor for object identification

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Gain-clamping techniques in two-stage double-pass L-band EDFA

S Optical Networks Course Lecture 2: Essential Building Blocks

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

THE ADVENT OF wavelength division multiplexing

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

All-Optical Signal Processing and Optical Regeneration

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

OPTICAL generation of microwave and millimeter-wave

High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Tunable Single-Mode Fiber Laser with a Low-Cost Active Fabry-Perot Filter of Ultra-Narrow-Linewidth and High Side-Mode-Suppressing Ratio

Theoretical Analysis of Tunable Single-Core Comb Filter Based on MZI

Waveguide-based single-pixel up-conversion infrared spectrometer

Wavelength Division Multiplexing of a Fibre Bragg Grating Sensor using Transmit-Reflect Detection System

OPTICAL COMMUNICATIONS S

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Multiwatts narrow linewidth fiber Raman amplifiers

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

High-power semiconductor lasers for applications requiring GHz linewidth source

A continuous-wave Raman silicon laser

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Supplementary Figures

Single-longitudinal-mode semiconductor laser with digital and mode-hop-free fine-tuning mechanisms

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

PUBLISHED VERSION.

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

Copyright 2004 Society of Photo Instrumentation Engineers.

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Transcription:

Edith Cowan University Research Online ECU Publications Pre. 2011 2009 Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers Feng Xiao Edith Cowan University Kamal Alameh Edith Cowan University Yong Lee Edith Cowan University This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-25-23123. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. This Journal Article is posted at Research Online. http://ro.ecu.edu.au/ecuworks/569

Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers Feng Xiao 1, Kamal Alameh 1,*, and Yong Tak Lee 2 1 WA Center of Excellence for MicroPhotonic System, Electron Science Research Institute, Edith Cowan University, Joondalup, WA, 6027, Australia. 2 Gwangju Institute of Science and Technology, Department of Information and Communication, Gwangju 500-712, Korea. *k.alameh@ecu.edu.au Abstract: A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 db. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 db over the whole C-band. 2009 Optical Society of America OCIS codes: (060.0060) Fiber optics and optical communications; (060.2320) Fiber optics amplifiers and oscillators. References and links 1. A. Bellemare, Continuous-wave silica-based erbium-doped fiber lasers, Prog. Quantum Electron. 27(4), 211 266 (2003). 2. M. A. Ummy, N. Madamopoulos, P. Lama, and R. Dorsinville, Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser, Opt. Express 17(17), 14495 14501 (2009). 3. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. M. Liu, and B. K. Zhou, Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers, Opt. Lett. 30(9), 952 954 (2005). 4. S. Yamashita, and K. Hotate, Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen, Electron. Lett. 32(14), 1298 1299 (1996). 5. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid, J. Lightwave Technol. 18(6), 825 831 (2000). 6. J. Yao, J. P. Yao, Z. C. Deng, and J. Liu, Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-beased phase modulator in the laser cavity, J. Lightwave Technol. 23(8), 2484 2490 (2005). 7. P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier, Opt. Commun. 259(1), 200 203 (2006). 8. S. Qin, D. Chen, Y. B. Tang, and S. L. He, Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains, Opt. Express 14(22), 10522 10527 (2006). 9. V. Roy, M. Piché, F. Babin, and G. W. Schinn, Nonlinear wave mixing in a multilongitudinal-mode erbiumdoped fiber laser, Opt. Express 13(18), 6791 6797 (2005). 10. S. L. Pan, C. Y. Lou, and Y. Z. Gao, Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter, Opt. Express 14(3), 1113 1118 (2006). 11. Y. Liu, X. Feng, S. Yuan, G. Kai, X. Dong, Simultaneous four-wavelength lasing oscillations in an erbiumdoped fiber laser with two high birefringence fiber Bragg gratings, Opt. Express 12(10), 2056 2061 (2004). 12. D. S. Moon, U. C. Paek, and Y. Chung, Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core, Opt. Express 13(14), 5574 5579 (2005). 13. T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings, IEEE Photon. Technol. Lett. 9(7), 910 912 (1997). 14. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, An 18-channel multifrequency laser, IEEE Photon. Technol. Lett. 8(7), 870 872 (1996). (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23123

15. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors, Opt. Express 16(16), 11703 11708 (2008). 16. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, Reconfigurable multilevel phase holograms for Optical switches, IEEE Photon. Technol. Lett. 14(6), 801 803 (2002). 17. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, A broadly tunable Erbiumdoped fiber ring laser: experimentation and modeling, IEEE J. Sel. Top. Quantum Electron. 7(1), 22 29 (2001). 18. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Optical phased array technology, Proc. IEEE 84(2), 268 298 (1996). 19. M. Prabhu, N. S. Kim, and K. Ueda, Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber, Opt. Rev. 7(4), 277 280 (2000). 1. Introduction Multi-wavelength fiber lasers have attracted considerable interest for their potential applications in optical communications, fiber sensors, optical instrumentation, and microwave photonic systems. Various gain approaches have been reported to achieve multi-wavelength lasing, including Erbium-doped fiber amplifier (EDFA) [1], semiconductor optical amplifier (SOA) [2], fiber Raman amplifier (FRA) [3]. It is well known that the intrinsic homogeneous line broadening and the cross-gain saturation characteristics of EDFAs make them unsuitable for attaining stable multi-wavelength lasing at room temperature when they are used in conjunction with a linear or ring laser cavity. SOA-based multi-wavelength fiber lasers are impractical because they cannot generate multiple-wavelengths with a high optical side-modesuppression-ratio (SMSR). In addition, multiple wavelength lasers based on the use of Raman amplifiers are also impractical because they require several pump lasers of very high power levels. Recently, new approaches have been employed to realize multi-wavelength fiber lasers, such as the cooling of the EDF to 77 K by liquid nitrogen [4], the use of a frequencyshifted feedback technique within the laser cavities [5,6], the combination of different gain media within the same laser cavity [7,8], and the introduction of high nonlinearity or polarization hole burning elements into the laser cavity [9 12]. Single-wavelength tunable fiber lasers have been well developed and commercialized, and many demonstrations of multi-wavelength fiber lasers based on the use of different gain media within optical cavities have been reported [13,14]. However, the lasing wavelengths in such lasers are fixed. The ability to independently tune the wavelength in multi-wavelength fiber laser structures is vital for a large number of applications, such as fiber sensors, optical test instruments, and microwave photonic systems. In this paper, we report a multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with erbium-doped optical amplifiers (EDFAs). The Opto-VLSI processor can arbitrarily select narrow wavebands from the amplified spontaneous emission (ASE) spectrum of the EDFAs and inject them into their corresponding fiber rings to generate laser signals simultaneously. The Opto-VLSI-based multi-wavelength tunable fiber laser can be electronically tuned within the gain bandwidth of the EDFAs, with a linewidth of less than 0.05 nm and a tuning step of 0.05 nm. 2. Opto-VLSI processor An Opto-VLSI processor consists of an array of electro-optic cells independently addressed by a Very-Large-Scale-Integrated (VLSI) circuit to generate a reconfigurable, reflective digital holographic diffraction grating capable of steering and/or multicasting an optical beam [15]. It comprises a silicon substrate, evaporated aluminum, a quarter-wave plate (QWP), liquid crystal (LC), Indium-Tin Oxide (ITO) and a glass. ITO is used as the transparent electrode, and evaporated aluminum as the reflective electrode. The quarter-wave plate (QWP) layer between the liquid crystal and the VLSI backplane is responsible for polarization insensitivity, and polarization dependent loss for optical beam steering is as low as 0.5 db [16]. The ITO layer is generally grounded and a voltage is applied at the reflective electrode by the VLSI circuit below the LC layer to generate digital phase holograms for optical beam control. Some (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23124

specific memory elements that store a digital voltage value are assigned to each pixel. This device is electronically controlled, software configurable, polarization independent, and very reliable since beam steering/multicasting is achieved with no mechanically moving part. The diffraction angle for the Opto-VLSI processor, αm, is given by: α m = arcsin( mλ ) d (1) where m is the diffracted order (in this paper only first order diffraction is considered), λ is the vacuum wavelength, and d is the grating period. 3. Structure of the Opto-VLSI-based multi-wavelength tunable fiber laser Fiber Collimator Array Lens 1 Grating Plate Circulator PC PC Optical Amplifier 1 Optical Amplifier 2 PC Optical Amplifier N Lens 2 5:95 Couplers 95% 5% Opto-VLSI Processor Laser Output Ports Controller Steering λ1 Holograms λm Fig. 1. The proposed multi-wavelength tunable fiber laser structure. The proposed Opto-VLSI-based multi-wavelength tunable fiber ring laser structure is shown in Fig. 1. It consists of N tunable fiber lasers simultaneously driven by a single OptoVLSI processor. Each tunable fiber laser employs an optical amplifier, an optical coupler, a polarization controller, a circulator, and one port from a collimator array. The broadband amplified spontaneous emission (ASE) noise from the gain medium is split by the optical coupler with a 5/95 power splitting ratio, where 5% of ASE power is used to extract the output of the tunable fiber laser while the remaining 95% is recirculated in the fiber ring cavity. The polarization controller (PC) is used to optimize the diffraction efficiency of the Opto-VLSI processor and to enforce single-polarization lasing. All the broadband ASE signals are directed to the corresponding collimator ports, via their corresponding circulators. A lens (Lens 1) is used between the collimator array and a diffraction grating plate to focus the collimated ASE beams onto a small spot onto the grating plate. The latter demultiplexes all the collimated ASE signals into wavebands (of different center wavelengths) along different directions. Another lens (Lens 2), located in the middle position between the grating plate and the Opto-VLSI processor, is used to collimate the dispersed optical beams in two dimensions and map them onto the surface of a 2-D Opto-VLSI processor, which is partitioned into N rectangular pixel blocks. Each pixel block is assigned to a tunable laser and #118667 - $15.00 USD (C) 2009 OSA Received 16 Oct 2009; revised 25 Nov 2009; accepted 25 Nov 2009; published 2 Dec 2009 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23125

used to efficiently couple back any part of the ASE spectrum illuminating this pixel block along the incident path into the corresponding collimator port (according to Eq. (1)). The selected waveband coupled back into the fiber collimator port is then routed back to the gain medium via the corresponding circulator, thus an optical loop is formed for the single-mode laser generation. Therefore, by uploading the appropriate phase holograms (or blazed grating) that drive all the pixel blocks of the Opto-VLSI processor, N different wavelengths can independently be selected for lasing within the different fiber loops, thus realizing a multiport tunable fiber laser source that can simultaneously generate arbitrary wavelengths at its ports. Note that this architecture offers excellent flexibility in terms of noninertial tuning because the lasing wavelengths can independently be selected using computer generated holograms. 4. Experiments and results To proof the principle of the proposed Opto-VLSI-based tunable fiber laser, an Opto-VLSIbased 3-wavelength tunable fiber laser was demonstrated using the experimental setup shown in Fig. 1. Each tunable fiber laser channel consists of an EDFA that operates in the C-band, a 1 2 optical coupler with 5/95 power splitting ratio, and a fiber collimator array. A 256- phase-level two-dimensional Opto-VLSI processor having 512 512 pixels with 15 µm pixel size was used to independently and simultaneously select any part of the gain spectrum from each EDFA into the corresponding fiber ring. Two identical lenses of focal length 10 cm were placed at 10 cm from both sides of the grating plate. An optical spectrum analyzer with 0.01 nm resolution was used to monitor the 5% output port of each optical coupler which serves as the output port for each tunable laser channel. The 95% port of each ASE signal was directed to a PC and collimated at about 0.5 mm diameter. A blazed grating, having 1200 lines/mm and a blazed angle of 70 at 1530 nm, was used to demultiplex the three EDFA gain spectra, which were mapped onto the active window of the Opto-VLSI processor by Lens 2. A Labview software was specially developed to generate the optimized digital holograms that steer the desired waveband and couple back into the corresponding collimator for subsequent recirculation in the fiber loop. The active window of the Opto-VLSI processor was divided into three pixel blocks corresponding to the positions of the three demultiplexed ASE signals, each pixel block dedicated for tuning the wavelength of a fiber laser. Optimized digital phase holograms were applied to the three pixel blocks, so that desired wavebands from the ASE spectra illuminating the Opto-VLSI processor could be selected and coupled back into their fiber rings, leading to simultaneous lasing at specific wavelengths. By changing the position of the phase hologram of each pixel block, the lasing wavelength for each fiber laser could be dynamically and independently tuned. The measured total cavity loss for each channel was around 12 db, which mainly includes (i) the coupling loss of the associated collimator; (ii) the blazed grating loss; and (iii) the diffraction loss and insertion loss of the Opto-VLSI processor. Note that the total cavity loss influences both the laser output power and the tuning range, as well as the pump current thresholds needed for lasing (60mA in the experiments) [17]. (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23126

Port 1 Port 2 Port 3 Fig. 2. Measured responses of the Opto-VLSI-based 3-wavelength fiber laser for coarse tuning operation over C-band. These three channels can independently and simultaneously be tuned over the whole C-band. Figure 2 demonstrates the coarse tuning capability of the 3-wavelength Opto-VLSI fiber laser operating over C-band. The measured output laser spectrum for each channel is shown for different optimized phase holograms uploaded onto the Opto-VLSI processor. All the channels could independently and simultaneously be tuned over the whole C-band. Port 1 and Port 2 have an output power level of about 9 dbm with an optical side-mode-suppression-ratio of more than 35 db. Port 3 has 2 db less output power because the EDFA s gain for this channel was intentionally dropped to demonstrate the ability to change the output power level via changing the pump current. The laser output power for each channel has a uniformity of about 0.5 db over the whole tuning range. Each laser channel exhibited very stable operation at room temperature when it was turned on for different periods of time ranging from a few hours to a few days. Figure 3 shows that the output power fluctuations at Port 2 are within 0.03 db during an observation period of 1-hour for a lasing wavelength of 1550 nm. The maximum output power for the multi-wavelength tunable fiber laser is about 9 dbm. This value is mainly dependent on the gain of the EDFA associated to that channel. Note that the thickness of the liquid crystal layer of the Opto-VLSI processor is very small (several microns), leading to spatial phase-modulation with negligible power loss. For high laser output power levels, the nonlinearity of the LC material could induce unequal phase shifts to the individual pixels of the steering phase hologram, leading to higher coupling loss, which reduces the output laser power. However, properly designed liquid-crystal mixtures can handle optical intensities as high as 700 W/cm 2 with negligible nonlinear effects [18], making the maximum laser output power mainly dependent on the maximum output optical power of the gain medium. (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23127

Fig. 3. The measured output power fluctuations at Port 2 for a lasing wavelength of 1550 nm. The measured laser outputs for fine wavelength tuning operation of the three channels are shown in Fig. 4. By shifting the center of each phase hologram by a single pixel across the active window of the Opto-VLSI processor, the wavelength was tuned by a step of around 0.05 nm for all the three channels. This corresponds to the mapping of 30 nm ASE spectrum of the EDFA of each channel across the 512 pixels (each of 15 µm size). Note that the tuning resolution can be made smaller than 0.05 nm by using an Opto-VLSI processor with a smaller pixel size. Note also that the shoulders on both sides of the laser spectrum of each tunable laser channel are due to self-phase modulation or other nonlinear phenomena arising from a high level of the output power [19]. Port 1 Port 2 Port 3 Fig. 4. Fine tuning operation for each channel of the Opto-VLSI-based 3-wavelength tunable fiber laser. The minimum tuning step was 0.05 nm. Since the Opto-VLSI processor has a broad spectral bandwidth, the multi-wavelength tunable laser structure shown in Fig. 1 could in principle operate over the O-, S-, C- and/or L- bands. Note that when the output power of each fiber laser is varied via the control of the current driving the pump laser of the EDFA, the other laser characteristics such as output (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23128

SMSR, laser linewidth, output power uniformity, tuning step, and tuning range were not changed. The pump-independent laser linewidth observation might be due to the limited resolution (0.01 nm) of the OSA we used in the experiments. Note also that the Opto-VLSI processor used in the experiment was able to achieve wavelength tuning for up to 8 ports independently and simultaneously. This is because each pixel block was about 0.8 mm wide and the active window of the Opto-VLSI active window was 7.6 mm 7.6 mm. 5. Conclusion A novel multi-wavelength tunable fiber laser that uses an Opto-VLSI processor in conjunction with optical amplifiers has been proposed and demonstrated. A reconfigurable Opto-VLSI processor has been used to realize wavelength tuning through optical beam steering of ASE wavebands, and coupling them into the fiber laser cavities. Experimental results have demonstrated independent and simultaneous tuning of all lasing wavelengths over the entire C-band, and shown that the multi-wavelength tunable laser can achieve a high SMSR of more than 35dB, excellent tunability with a wavelength tuning resolution as small as 0.05 nm, a narrow linewidth of 0.05nm, a good power uniformity of 0.5 db, and excellent stability at room temperature. (C) 2009 OSA 7 December 2009 / Vol. 17, No. 25 / OPTICS EXPRESS 23129