RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

Similar documents
RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

ARCHIVE INFORMATION. RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs MRF6P3300HR3 MRF6P3300HR5. Freescale Semiconductor

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband 2-Stage Power Amplifiers

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband 2-Stage Power Amplifiers

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

Characteristic Symbol Value (2,3) Unit

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted)

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Characteristic Symbol Value (2,3) Unit

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

Gallium Arsenide PHEMT RF Power Field Effect Transistor

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

RF LDMOS Wideband Integrated Power Amplifiers

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Characteristic Symbol Value (2,3) Unit. Test Methodology

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifier

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Characteristic Symbol Value (2,3) Unit. Test Methodology

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Quiescent Current Control for the RF Integrated Circuit Device Family

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

ARCHIVE INFORMATION. RF Power Field -Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET MRF372R3 MRF372R5. Freescale Semiconductor

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifier

Transcription:

Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of this device make it ideal for large- signal, common- source amplifier applications in 32 volt analog or digital television transmitter equipment. Typical Narrowband Two-Tone Performance @ 860 MHz: V DD = 32 Volts, I DQ = 600 ma, P out = 270 Watts PEP Power Gain.4 db Drain Efficiency 44.8% IMD -28.8 dbc Capable of Handling : VSWR, @ 32 Vdc, 860 MHz, 3 db Overdrive, Designed for Enhanced Ruggedness Features Characterized with Series Equivalent Large-Signal Impedance Parameters Internally Matched for Ease of Use Designed for Push-Pull Operation Only Qualified Up to a Maximum of 32 V DD Operation Integrated ESD Protection RoHS Compliant In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 3 inch Reel. R5 Suffix = 50 Units per 56 mm, 3 inch Reel. Document Number: MRFE6P3300H Rev. 2, 2/09 860 MHz, 300 W, 32 V LATERAL N-CHANNEL RF POWER MOSFET CASE 375G-04, STYLE NI-860C3 Table. Maximum Ratings Rating Symbol Value Unit Drain-Source Voltage V DSS -0.5, 66 Vdc Gate-Source Voltage V GS -0.5, 2 Vdc Storage Temperature Range T stg - 65 to 50 C Case Operating Temperature T C 50 C Operating Junction Temperature (,2) T J 225 C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 300 W CW Case Temperature 82 C, 2 W CW Case Temperature 79 C, 0 W CW Case Temperature 8 C, 60 W CW R θjc 0.23 0.24 0.27 0.27 C/W. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN955., Inc., 07-09. All rights reserved.

Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22-A4) Machine Model (per EIA/JESD22-A5) Charge Device Model (per JESD22-C) Class 3B (Minimum) C (Minimum) IV (Minimum) Table 4. Electrical Characteristics (T A = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics () Zero Gate Voltage Drain Leakage Current (4) (V DS = 66 Vdc, V GS = 0 Vdc) I DSS μadc Zero Gate Voltage Drain Leakage Current (4) (V DS = 32 Vdc, V GS = 0 Vdc) Gate-Source Leakage Current (V GS = 5 Vdc, V DS = 0 Vdc) I DSS μadc I GSS μadc On Characteristics () Gate Threshold Voltage (V DS = Vdc, I D = 350 μadc) Gate Quiescent Voltage (3) (V DD = 32 Vdc, I D = 600 madc, Measured in Functional Test) Drain-Source On-Voltage (V GS = Vdc, I D = 2.4 Adc) Dynamic Characteristics (,2) Reverse Transfer Capacitance (4) (V DS = 32 Vdc ± 30 mv(rms)ac @ MHz, V GS = 0 Vdc) Output Capacitance (4) (V DS = 32 Vdc ± 30 mv(rms)ac @ MHz, V GS = 0 Vdc) Input Capacitance () (V DS = 32 Vdc, V GS = 0 Vdc ± 30 mv(rms)ac @ MHz) V GS(th) 2.2 3 Vdc V GS(Q) 2 2.8 4 Vdc V DS(on) 0.22 0.3 Vdc C rss.22 pf C oss 27 pf C iss 60 pf Functional Tests (3) (In Freescale Narrowband Test Fixture, 50 ohm system) V DD = 32 Vdc, I DQ = 600 ma, P out = 270 W PEP, f = 857 MHz, f2 = 863 MHz Power Gain G ps 9.4 23 db Drain Efficiency η D 4 44.8 % Intermodulation Distortion IMD -28.8-27 dbc Input Return Loss IRL -8.4-9 db. Each side of the device measured separately. 2. Part internally matched both on input and output. 3. Measurement made with device in push-pull configuration. 4. Drains are tied together internally as this is a total device value. 2

R V BIAS R3 COAX C C2 C3 B Z9 Z C23 C5 C6 C8 C7 COAX3 V SUPPLY Z4 Z8 Z2 Z4 Z6 RF INPUT Z C4 Z2 Z3 Z6 C6 Z7 DUT C C C4 C2 Z8 RF OUTPUT V BIAS COAX2 C9 C5 C7 C8 R2 B2 Z5 Z Z9 Z3 Z5 Z7 Z C24 C9 C3 C COAX4 C22 C2 V SUPPLY Z 0.40 x 0.08 Microstrip Z2, Z3 0.563 x 0. Microstrip Z4, Z5.86 x 0.058 Microstrip Z6, Z7 0.46 x 0.727 Microstrip Z8, Z9 0.9 x 0.507 Microstrip Z, Z.306 x 0.50 Microstrip Z2, Z3 0.225 x 0.507 Microstrip Z4, Z5 0.440 x 0.435 Microstrip Z6, Z7 0.23 x 0.25 Microstrip Z8 0.40 x 0.08 Microstrip Z9, Z 0.339 x 0.65 Microstrip PCB Arlon CuClad 250GX-0300-55-22, 0.030, ε r = 2.5 Figure. 8-900 MHz Narrowband Test Circuit Schematic Table 5. 8-900 MHz Narrowband Test Circuit Component Designations and Values Part Description Part Number Manufacturer B, B2 Ferrite Beads, Short 274309447 Fair-Rite C, C9.0 μf, 50 V Tantulum Chip Capacitors T49C5K050AT Kemet C2, C7, C7, C2 0. μf, 50 V Chip Capacitors CDR33BX4AKYS Kemet C3, C8, C6, C 00 pf Chip Capacitors ATC0B2JT50XT ATC C4, C5, C3, C4 0 pf Chip Capacitors ATC0BJT500XT ATC C6, C2 8.2 pf Chip Capacitors ATC0B8R2JT500XT ATC C 9. pf Chip Capacitor ATC0B9RBT500XT ATC C.8 pf Chip Capacitor ATC0BR8BT500XT ATC C5, C9 47 μf, 50 V Electrolytic Capacitors EMVY500ADA470MF80G Nippon C8, C22 470 μf, 63 V Electrolytic Capacitors ESME630ELL47MK25S United Chemi-Con C23, C24 22 pf Chip Capacitors ATC0B2FT500XT ATC Coax, 2, 3, 4 50 Ω, Semi Rigid Coax, 2.06 Long UT-4A-TP Micro-Coax R, R2 Ω, /4 W Chip Resistors CRCW6R0FKEA Vishay R3 kω, /4 W Chip Resistor CRCW60FKEA Vishay 3

C C5 C8 C23 V GG C2 C3 B V DD R3 R C6 C7 COAX COAX3 MRF6P92, Rev. 2 C4 C5 C6 CUT OUT AREA C C C2 C4 C3 COAX2 COAX4 R2 C C2 V GG C7 C8 B2 C24 VDD C22 C9 C9 Figure 2. 8-900 MHz Narrowband Test Circuit Component Layout 4

TYPICAL NARROWBAND CHARACTERISTICS G ps, POWER GAIN (db) 2.5 9.5 9 8.5 8 7.5 7 8 ACP-L 830 ACP-U 840 η D G ps V DD = 32 Vdc, P out = 60 W (Avg.) I DQ = 600 ma, 8K Mode OFDM 64 QAM Data Carrier Modulation 5 Symbols 850 IRL 860 f, FREQUENCY (MHz) -65 900 Figure 3. Single-Carrier OFDM Broadband Performance @ 60 Watts Avg. 870 880 890 3 29 27 25-45 -50-55 -60 η D, DRAIN EFFICIENCY (%) ACPR (dbc) 0-5 - -5 - IRL, INPUT RETURN LOSS (db).5 44 G ps, POWER GAIN (db) 9.5 9 8.5 8 7.5 7 6.5 8 G ps 830 η D IRL 840 V DD = 32 Vdc, P out = W (Avg.) I DQ = 600 ma, 8K Mode OFDM 64 QAM Data Carrier Modulation 5 Symbols 850 ACP-L 860 ACP-U f, FREQUENCY (MHz) -60 900 Figure 4. Single-Carrier OFDM Broadband Performance @ Watts Avg. 870 880 890 42 40 38-45 -50-55 η D, DRAIN EFFICIENCY (%) -40 0 ACPR (dbc) -5 - -5 - IRL, INPUT RETURN LOSS (db) G ps, POWER GAIN (db) 2 9 8 7 6 I DQ = 2400 ma 00 ma 600 ma 0 ma 800 ma V DD = 32 Vdc, f = 857 MHz, f2 = 863 MHz Two-Tone Measurements, 6 MHz Tone Spacing P out, OUTPUT POWER (WATTS) PEP 0 600 IMD, THIRD ORDER INTERMODULATION DISTORTION (dbc) - 0-2 0-3 0-4 0-5 0-6 0 V DD = 32 Vdc, f = 857 MHz, f2 = 863 MHz Two-Tone Measurements, 6 MHz Tone Spacing I DQ = 800 ma 600 ma 0 ma 00 ma 2400 ma 0 P out, OUTPUT POWER (WATTS) PEP 600 Figure 5. Two-T one Power Gain versus Output Power Figure 6. Third Order Intermodulation Distortion versus Output Power 5

TYPICAL NARROWBAND CHARACTERISTICS IMD, INTERMODULATION DISTORTION (dbc) - 0-2 0-3 0-4 0-5 0-6 0-70 V DD = 32 Vdc, I DQ = 600 ma f = 857 MHz, f2 = 863 MHz Two-Tone Measurements, 6 MHz Tone Spacing 3rd Order 7th Order 5th Order 0 600 IMD, INTERMODULATION DISTORTION (dbc) - 0-2 0-3 0-4 0-5 0-6 0-70 V DD = 32 Vdc, P out = 50 W (PEP), I DQ = 600 ma Two-Tone Measurements (f f2)/2 = Center Frequency of 860 MHz IM3-L IM3-U IM5-U IM5-L IM7-U IM7-L 80 P out, OUTPUT POWER (WATTS) PEP TWO-T ONE SPACING (MHz) Figure 7. Intermodulation Distortion Products versus Output Power Figure 8. Intermodulation Distortion Products versus Tone Spacing P out, OUTPUT POWER (dbm) 63 62 6 60 59 58 57 56 55 54 53 32 P3dB = 55.9 dbm (388.37 W) PdB = 55.5 dbm (327.9 W) P6dB = 56.28 dbm (424.38 W) Actual Ideal V DD = 32 Vdc, I DQ = 600 ma Pulsed CW, 2 μsec(on), % Duty Cycle f = 860 MHz 33 34 35 36 37 38 39 40 4 P in, INPUT POWER (dbm) Figure 9. Pulsed CW Output Power versus Input Power 42 η D, DRAIN EFFICIENCY (%), G ps, POWER GAIN (db) 45 V DD = 32 Vdc, I DQ = 600 ma, f = 860 MHz -30 C -25 40 8K Mode OFDM, 64 QAM Data Carrier -30 Modulation, 5 Symbols 25 C 35-35 85 C 30 η D 25 C -40 25 85 C 25 C T C = -30 C G ps -45-50 5 ACP-U 85 C -30 C -55 5 ACP-L 0-70 0 0 P out, OUTPUT POWER (WATTS) AVG. Figure. Single-Carrier DVBT OFDM ACPR, Power Gain and Drain Efficiency versus Output Power -60-65 ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 6

TYPICAL NARROWBAND CHARACTERISTICS G ps, POWER GAIN (db) 22 G 2 T ps C = -30 C 60 9 8 7 6 5 25 C 85 C η D V DD = 32 Vdc I DQ = 600 ma f = 860 MHz 0 P out, OUTPUT POWER (WATTS) CW -30 C Figure. Power Gain and Drain Efficiency versus CW Output Power 25 C 85 C 70 50 40 30 0 800 η D, DRAIN EFFICIENCY (%) G ps, POWER GAIN (db) 2 9 8 7 I DQ = 600 ma f = 860 MHz V DD = 28 V 32 V 30 V 6 0 50 0 50 0 250 300 350 400 P out, OUTPUT POWER (WATTS) CW Figure 2. Power Gain versus Output Power 7 MTTF (HOURS) 6 5 4 90 30 50 70 90 2 230 T J, JUNCTION TEMPERATURE ( C) This above graph displays calculated MTTF in hours when the device is operated at V DD = 32 Vdc, P out = 270 W PEP, and η D = 44.8%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 3. MTTF versus Junction Temperature 250 7

DIGITAL TEST SIGNALS PROBABILITY (%) 0 0. 0.0 0.00 8K Mode DVTB OFDM 64 QAM Data Carrier Modulation 5 Symbols (db) -2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-00 khz BW 7.6 MHz ACPR Measured at 3.9 MHz Offset from Center Frequency khz BW 0.000 0 2 4 6 8 PEAK-T O-AVERAGE (db) Figure 4. Single-Carrier DVTB OFDM 2 - -5-4 -3-2 - 0 2 3 4 f, FREQUENCY (MHz) Figure 5. 8K Mode DVBT OFDM Spectrum 5 8

f = 890 MHz Z load f = 830 MHz Z o = Ω f = 890 MHz Z source f = 830 MHz V DD = 32 Vdc, I DQ = 600 ma, P out = 270 W PEP f MHz 830 845 860 Z source Ω 4.52 - j6.73 4.22 - j6.38 3.89 - j5.8 Z load Ω 4.89 - j.35 5.06 - j.0 5.8 - j0.58 875 3.54 - j5. 5.27 - j0. 890 3.39 - j4.32 5.36 j0.43 Z source = Test circuit impedance as measured from gate to gate, balanced configuration. Z load = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network Device Under Test - Output Matching Network - Z source Z load Figure 6. 8-900 MHz Narrowband Series Equivalent Source and Load Impedance 9

PACKAGE DIMENSIONS ccc M R (LID) T A M B M 4X K J G 4 L 2 3 4 5 2X Q bbb M B (FLANGE) T A M B M NOTES:. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y4.5M-994. 3. DIMENSION H TO BE MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 4. RECOMMENDED BOLT CENTER DIMENSION OF.40 (28.96) BASED ON 3M SCREW. S (INSULATOR) bbb M T A M E B M H A 4X D bbb M T A A M ccc M T A M N (LID) M (INSULATOR) bbb M T A M B M B M B M B F C T SEATING PLANE INCHES MILLIMETERS DIM MIN MAX MIN MAX A.335.345 33.9 34.6 B 0.380 0.390 9.65 9.9 C 0.80 0.224 4.57 5.69 D 0.325 0.335 8.26 8.5 E 0.060 0.070.52.78 F 0.004 0.006 0. 0.5 G.0 BSC 27.94 BSC H 0.097 0.7 2.46 2.72 J 0.225 BSC 5.397 BSC K 0.35 0.65 3.43 4.9 L 0.425 BSC.8 BSC M 0.852 0.868 2.64 22.05 N 0.85 0.869 2.62 22.07 Q 0.8 0.38 3.00 3.30 R 0.395 0.405.03.29 S 0.394 0.406.0.3 bbb 0.0 REF 0.25 REF ccc 0.05 REF 0.38 REF STYLE : PIN. DRAIN 2. DRAIN 3. GATE 4. GATE 5. SOURCE CASE 375G-04 ISSUE G NI-860C3

PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes AN955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB22: Using Data Sheet Impedances for RF LDMOS Devices The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description 0 May 07 Initial Release of Data Sheet Dec. 08 Table 4, Dynamic Characteristics, corrected C iss test condition to indicate AC stimulus on the V GS connection versus the V DS connection, corrected Typ value from 6 to 60 pf, p. 2 Fig., Test Circuit Schematic, Z-list, changed Z4, Z5 from.03 x 0.058 Microstrip to.86 x 0.058 Microstrip; Z, Z from.054 x 0.50 Microstrip to.306 x 0.50 Microstrip; and Z9, Z from 0.65 x 0.339 Microstrip to 0.339 x 0.65 Microstrip; also separated Z and Z8 into two lines in Z-list, p. 3 Updated PCB information to show more specific material details, Fig., Test Circuit Schematic, p. 3 Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part numbers, p. 3 2 Dec. 09 Data sheet revised to reflect part status change, removing MRFE6P3300HR5. Refer to PCN34. (See Rev. data sheet for MRFE6P3300HR5.)

How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed:, Inc. Technical Information Center, EL56 East Elliot Road Tempe, Arizona 85284-800-52-6274 or -480-768-230 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 8829 Muenchen, Germany 44 296 380 456 (English) 46 8 520080 (English) 49 89 923 559 (German) 33 69 35 48 48 (French) www.freescale.com/support Japan: Japan Ltd. Headquarters ARCO Tower 5F -8-, Shimo-Meguro, Meguro-ku, Tokyo 53-0064 Japan 0 94 or 8 3 5437 925 support.japan@freescale.com Asia/Pacific: China Ltd. Exchange Building 23F No. 8 Jianguo Road Chaoyang District Beijing 0022 China 86 5879 8000 support.asia@freescale.com For Literature Requests Only: Literature Distribution Center -800-44-2447 or -303-675-240 Fax: -303-675-250 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. reserves the right to make changes without further notice to any products herein. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer's technical experts. does not convey any license under its patent rights nor the rights of others. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should Buyer purchase or use products for any such unintended or unauthorized application, Buyer shall indemnify and hold and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of, Inc. All other product or service names are the property of their respective owners., Inc. 07-09. All rights reserved. Document Number: MRFE6P3300H 2 Rev. 2, 2/09