A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Similar documents
Dual-band MIMO antenna using double-t structure for WLAN applications

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A dual-band antenna for wireless USB dongle applications

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

COMPACT PLANAR MULTIBAND ANTENNA FOR GPS,DCS,2.4/5.8 GHz WLAN APPLICATIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Dual-band bow-tie antenna with parasitic elements for WLAN applications

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Design of a Novel Dual - Band Planar Inverted F Antenna for Mobile Radio Applications

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

A Compact Dual-Polarized Antenna for Base Station Application

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Chapter 7 Design of the UWB Fractal Antenna

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

Broadband Circular Polarized Antenna Loaded with AMC Structure

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A Broadband Omnidirectional Antenna Array for Base Station

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

A compact ultra wideband antenna with WiMax band rejection for energy scavenging

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

CYLINDRICAL-RECTANGULAR MICROSTRIP ARRAY WITH HIGH-GAIN OPERATION FOR IEEE J MIMO APPLICATIONS

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

SMALL-SIZE MICROSTRIP-COUPLED PRINTED PIFA FOR 2.4/5.2/5.8 GHz WLAN OPERATION IN THE LAPTOP COMPUTER

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Ultra-Wideband Monopole Antenna with Multiple Notch Characteristics

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication

A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets

A New UWB Antenna with Band-Notched Characteristic

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

Analysis and Design of Microstrip Patch Antenna For Triple Band Applications

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

High gain W-shaped microstrip patch antenna

Multiband Printed Monopole Slot Antenna for WWAN Operation in the Laptop Computer Kin-Lu Wong, Fellow, IEEE, and Li-Chun Lee

A MICROSTRIP ANTENNA FOR WIRELESS APPLICATION

A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA

A 2.3/3.3 GHz Dual Band Antenna Design for WiMax Applications

A Novel Compact CPW-FED Printed Dipole Antenna for UHF RFID and Wireless LAN Applications

A folded loop antenna with four resonant modes

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Design of Fractal Antenna for RFID Applications

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

A Dual-Band Two Order Filtering Antenna

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

Compact Dual-Band MIMO Antenna with High Port Isolation for WLAN Applications

DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

Design and Analyze of a Planar UWB Antenna for WIMAX and WLAN Applications

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

A Compact Wide slot antenna with dual bandnotch characteristic for Ultra Wideband Applications

A New Omni-directional Monopole Antenna for Interference Reduction

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14 No. 1, June 2015

A Novel Compact Wide Band CPW fed Antenna for WLAN and RFID Applications

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

A Compact Band-selective Filter and Antenna for UWB Application

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

A simple UWB monopole antenna using half-elliptical radiator

Transcription:

J Electr Eng Technol.21; 1(3): 181-18 http://dx.doi.org/1.37/jeet.21.1.3.181 ISSN(Print) 197-12 ISSN(Online) 293-7423 A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications Hyeonjin Lee Abstract In this paper a printed pair dipole antenna with double tapered microstrip balun for wireless communications is proposed. The proposed antenna consists of a pair arm of different sizes that is branched microstrip line and microstrip line with the ground plane on opposite side of the dielectric substrate plane. The proposed antenna is matched between the ground plane to the microstrip line by double tapered microstrip balun. This antenna obtains multi-band radiation frequency band. The impedance bandwidths for a reflection coefficient of VSWR 2 are about 1.1 GHz (2.3~3.336 GHz), 1.6 GHz (4.7~6.26 GHz) and 1.1GHz (6.8~8.[GHz]). Additionally, the measurement peak gain is about 3.6 dbi. The proposed antenna is able to support wireless communication applications. Keywords: A pair dipole antenna, Multi-band frequency, Tapered microstrip 1. Introduction Recently, there has been rapid development in wireless communications. Regarding connectivity, a considerable amount of data transmissions between information appliances with fast and secure transmissions to procure wireless inactions without cable take place in the bandwidth of wireless communication systems. Accordingly, wide and multiband antennas are required [1, 2]. Printed dipole antennas are highly suitable for integration onto a circuit board of communication devices, leading to attractive features such as a reduction of the required system volume and a decreased fabrication cost of the final product [3, 4]. The antenna should be in planar form, lightweight, and compact so that it can easily be embedded in the cover of a communication device [, 6]. In this paper, we proposed a novel design of a printed two pair dipole antenna. The proposed antenna is fed by a microstrip line, and impedance is matched by adjusting the width and height of the tapered microstrip [4-7]. This antenna has characteristics of threeband resonance frequency and a wide bandwidth. Prototypes of the proposed antenna were designed for wireless communication in the WLL (wireless local loop), WLAN (wireless local area network) (IEEE 82 11b/a) bands, and for DSRC (dedicated short-range communications) operations [8, 9]. The simulation and evaluation was carried out using the HFSS software. The simulated and measured results of the antenna design are presented and discussed. or poles into which radio frequency current flows. This current and the associated voltage causes and electromagnetic or radio signal to be radiated [1, 11]. Being more specific, a dipole is generally taken to be an antenna that consists of a resonant length of conductor cut to enable it to be connected to the feeder. For resonance the conductor is an odd number of half wavelengths long. In most cases a single half wavelength is used, although three, five wavelength antennas are equally valid. Geometry and dimensions of the proposed antenna shows Fig. 1. The proposed antenna is printed on the Tefron substrate of relative permittivity.2 with a thickness of 1.2 mm. The fed method of this antenna uses a microstrip line of Ω, thus making it an easily feed method. The structure of the two different sized dipole arms are printed on opposite side of substrate, as shown in Fig. 1. The top side consists of branched microstrip line. The bottom side 2. Configuration and Design Generally, the dipole antenna consists of two terminals Corresponding Author: Depatment of Electrical and Electronic Engineering, Dongkang College, Korea. (hyeonjin@dkc.ar.kr) Received: April 2, 214; Accepted: November 17, 214 Fig. 1. Geometry Copyright c The Korean Institute of Electrical Engineers This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3./)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 181

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications Table 1. The design parameters value of proposed antenna [mm]. Parameter Value Parameter Value L1 1.4 W 3.3 L2 22.8 Gnd_L1 9 L3 4.3 Gnd_L2 18 L4 31 Gnd_L3 4 L 6 Gnd_W1 3.3 consists of branched microstrip line with dual tapered ground plane. The design parameters of the proposed antenna are presented in Table 1. The each pair dipole arm printed in both sides on the dielectric substrate. Here, L1 and L2 is the length of each dipole arm; while L3 and L4 are the lengths of the streams of the proposed antenna, respectively. In addition, Gnd_L1, Gnd_L2, and Gnd_L3 are the tapered widths, L is length of the tapered at the ground plane. Here, W is the width of a microstrip feed line The microstrip feed line and the ground plane is printed on opposite sides on the dielectric substrate plane. The width of line L1 and L2 is 3. mm, respectively. The design parameters of the proposed antenna are presented in Table 1. 3. Results and discussion The pair dipole, microstrip feed line and double tapered balun of the proposed antenna is printed both sides on dielectric substrate plane, as shown Fig. 1. The wave length of center frequency of.23 GHz is about 32mm, in this paper. The reflection coefficient for the L2/L1 ratio was plotted by means of a simulation, as shown in Fig. 2. The length of L1 was changed from 1.4 to 12.6 mm. Here, the length of L2 was held at 22.8 mm. As result, when L1 was 1.4mm, the reflection coefficient was most suitable and the bandwidth reached its maximum value. Additionally, L2 is the long dipole of the antenna. When the value of L1 Return loss -1-2 -3 L2/L1=2.2 L2/L1=2. L2/L1=1.8-4 1 2 3 4 6 7 8 9 1 Fig. 2. Simulated reflection coefficient to the L2/L1 ratio Return Loss [db] -1-2 -3 L2 - L1 =9 L2 - L1 =12 L2 - L1 =1 L2 - L1 =18-4 1 2 3 4 6 7 8 9 1 Fig. 3. Simulated reflection coefficient for variable distance between L2 to L1 of a pair dipole. was increased, the second radiation vanished. Fig. 3 shows the reflection coefficient for variable distance between the L2 to L1 by analyzing a simulation. The distance was changed from 9 to 18 mm by step 3mm. As result, when distance of L2 and L1 was 1mm, the bandwidth of reflection coefficient had a stable and a maximum value. The second resonance characteristic went bed when distance was shorting, as shown Fig. 3. The distance of between radiator element appeared the most good gain characteristics in case of.6 ~.7λg as a generally array antennas. Therefore, as the distance get shorter that resonance characteristic go bed. Fig. 4 shows surface current distribution each resonance band of 2.6,.2, 7.14 GHz. Fig. 4 (a) is plot the resonance frequency at 8.14 GHz. While the proposed antenna shows to appear a lots of surface current to long dipole, short dipole appear a few surface current. On the other hand of Fig. 4 (b) there appear surface current to short dipole, long dipole appear few surface current. Fig. 4 (c) shows to appear resonance three times at stream of microstrip feed line, also shows same appearance long dipole. The simulated and measured reflection coefficient of the proposed antenna shows in Fig.. As shown in Fig., the simulated reflection coefficient agrees well with the measured return loss. Also, the simulated input impedance of a Smith chart shows in Fig. 6. The input impedance matches very well at the excited part, as shown in Fig. 6. A photograph of the proposed antenna is shown in Fig. 7. The rear side and the front side of the photograph show in Figs. 7 (a) and (b). Fig. 7 (b) shows the reverse side of the antenna. As shown in Fig. 8, the and the radiation patterns of the proposed two-pair dipole are measured at the resonant frequencies of 2.6,.2 and 7.14 GHz. The measured radiation patterns at the first, second, and third resonant frequencies are shown in Fig. 8. As generally estimated, the radiation patterns at these three resonant frequencies are similar to those of the conventional printed dipole antenna. The tapered microstrip matching by 182 J Electr Eng Technol.21; 1(3): 181-18

Hyeonjin Lee -1 Return loss -2-3 Simulated S11 Measured S11-4 1 2 3 4 6 7 8 9 1 Fig.. The measured and simulated reflection coefficient (a) surface current at 2.6 GHz (b) surface current at.2 GHz Fig. 6. Simulated impedance on Smith chart of the proposed antenna. (a) front side (b) rear side Fig. 7. Photograph of manufactured antenna. (c) surface current at 7.14 GHz Fig. 4. Current distribution the ground plane caused the radiation pattern to tilt the right side, as shown in Fig. 8 (a) and (b). The proposed antenna had a pick gain of approximately 3.6 dbi. The measured pick gains of proposed antenna are presented in Table 2. http://www.jeet.or.kr 183

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications Table 2. The measured pick gains. gain 2.6 GHz.2 GHz 7.14 GHz Measured value [dbi] 3.6 3.6 2.8 9 6 12 3-1 -2-3 33 3 24 27 4. Conclusion A printed pair dipole antenna for application in wireless communications proposed in this paper. The proposed antenna is introduced to a double tapered microstrip balun that obtained characteristics a wideband, threeband resonance frequency. It is designed for wireless communication for WLL, WLAN (IEEE 82 11b/a) and DSRC band operations. The results shown the impedance bandwidth for reflection coefficient of below 1dB is about 1.1GHz (2.3~3.336[GHz]), 1.6GHz (4.7~6.26[GHz]) and 1.1GHz (6.8~8.[GHz]), at respectively radiation band. Also, the measurement peak gain 2.6 and.2 GHz is about 3.6 dbi. The proposed antenna is able to support wireless communication applications. 1 21 References 9 9 6 12 6 12 3 1 3 1 18 (a) 2.6 GHz -1-2 -3 18 (b).2ghz -1-2 -3 18 (c) 7.14GHz Fig. 8. Measurement radiation patterns at each frequency 33 21 33 21 3 24 3 24 27 27 [1] C. Wu, Printed antenna structure for wireless data communications, U.S. Pat. 6 8 774, Dec. 28, 1999. [2] L. M. Burns and C. L. Woo, Dual orthogonal monopole antenna system, U.S. Pat. 99 838, Nov. 23, 1999. [3] Suh, Y.H., and Chang, K.: Low cost microstrip-fed dual frequency printed dipole antenna for wireless communications, Electron. Lett., 2, 36, (14), pp. 1177-1179. [4] Hyeonjin Lee, J. w. Jung, Y. S. Lim, Printed Dual Dipole Antenna with Modified Taper Matching for WLAN Communications, Microwave and Optical technology Letter, Vol. 4, No. 2, 212. [] Yen-Liang Kuo, Printed double-t monopole antenna for 2.4/.2 GHz dual-band WLAN operations, IEEE Transactions on Antennas and Propagation, 23. [6] J. Ma. Design of an ultra-wideband antenna with a novel dual band-notched structure, Microwave and Optical Technology Letters, 29. [7] Shuiyang Lin. A novel dual-frequency monopole antenna for WCDMA and 2. GHz extension band, 21 International Conference on Microwave and Millimeter Wave Technology,, 21. [8] Sun, L., S.G. Zhou, and Q.Z. Liu. A new dual frequency band antenna for indoor GSM/UMTS/WLAN applications, Proceedings of the 9th International Symposium on Antennas Propagation and EM Theory, 21. [9] Cheng-Hung Lin, The Omni-directional Dipole Antenna Structure and Design, 26 7th International Symposium on Antennas Propagation & EM Theory, 26. [1] S. Kahng, J. Jeon, T. Park, An Orthogonally Polarized Negative Resonance CRLH Patch Antenna, Journal of Electrical Engineering & Technology, J Electr Eng Technol.21;1(1):331-337. [11] Mohammad Aneesh, A. Kumar, A. Singh, Kamakshi, 184 J Electr Eng Technol.21; 1(3): 181-18

Hyeonjin Lee J. A Aasari, Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network, Journal of Electrical Engineering & Technology, J Electr Eng Technol.21; 1(2): 634-64. Hyeonjin Lee He received Ph.D degree in electrical engineering from Chonnam national university. His research interests are Microwave engineering and Antenna design. http://www.jeet.or.kr 18