CMOS ADC & DAC Principles

Similar documents
Analog-to-Digital i Converters

Another way to implement a folding ADC

Systematic Design of a 200 MS/s 8-bit Interpolating A/D Converter

A 10-BIT 1.2-GS/s NYQUIST CURRENT-STEERING CMOS D/A CONVERTER USING A NOVEL 3-D DECODER

Lecture 9, ANIK. Data converters 1

Assoc. Prof. Dr. Burak Kelleci

Design of 12-bit 100-MHz Current-Steering DAC for SOC Applications

Mixed-Signal-Electronics

EE247 Lecture 15. EE247 Lecture 15

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

A Successive Approximation ADC based on a new Segmented DAC

Analog to Digital Conversion

Chapter 3 Novel Digital-to-Analog Converter with Gamma Correction for On-Panel Data Driver

Mixed-Signal-Electronics

A 7 bit 3.52 GHz Current Steering DAC for WiGig Applications

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

The need for Data Converters

Design of Analog Integrated Systems (ECE 615) Outline

Summary Last Lecture

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture

DIGITALLY controlled and area-efficient calibration circuits

Low-Power Pipelined ADC Design for Wireless LANs

Summary Last Lecture

Digital Calibration for Current-Steering DAC Linearity Enhancement

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

Chapter 2 Basics of Digital-to-Analog Conversion

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

Solution to Homework 5

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters

MOS Transistor Mismatch for High Accuracy Applications

A 6-bit Subranging ADC using Single CDAC Interpolation

Fully-differential amplifiers

MEDIUM SPEED ANALOG-DIGITAL CONVERTERS

Electronics A/D and D/A converters

Flash ADC (Part-I) Architecture & Challenges

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs)

Lecture #6: Analog-to-Digital Converter

Design of Pipeline Analog to Digital Converter

High-speed ADC techniques - overview and scaling issues - Vladimir Stojanovic

EE247 Lecture 14. EE247 Lecture 14

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Low-power Sigma-Delta AD Converters

Design of 10-bit current steering DAC with binary and segmented architecture

CMOS High Speed A/D Converter Architectures

A 130-NM CMOS 400 MHZ 8-BIT LOW POWER BINARY WEIGHTED CURRENT STEERING DAC

RECENTLY, low-voltage and low-power circuit design

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Categories and Subject Descriptors B.7.m Integrated Circuits: miscellaneous. General Terms Design

Tuesday, February 22nd, 9:15 11:10. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Design of a Low Power Current Steering Digital to Analog Converter in CMOS

A 1.5-V 14-Bit 100-MS/s Self-Calibrated DAC

Selecting and Using High-Precision Digital-to-Analog Converters

DESIGN OF FOLDING CIRCUIT AND SAMPLE AND HOLD FOR 6 BIT ADC

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

Fig. 2. Schematic of the THA. M1 M2 M3 M4 Vbias Vdd. Fig. 1. Simple 3-Bit Flash ADC. Table1. THA Design Values ( with 0.

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

An 8-Bit Unified Segmented Current-Steering Digital-to-Analog Converter

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

A 4-bit High Speed, Low Power Flash ADC by Employing Binary Search Algorithm 1 Brahmaiah Throvagunta, 2 Prashant K Shah

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12.

Designing of a digital to analog convertor fully in CMOS,0.18µm,1.8V technology with SFDR more than 70dB

4 Bits 250MHz Sampling Rate CMOS Pipelined Analog-to-Digital Converter

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

The Real World is Analog ADC are necessary to convert the real world signals (analog) into the digital form for easy processing. Digital Processing

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

Transfer Function DAC architectures/examples Calibrations

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2.

Proposing. An Interpolated Pipeline ADC

Summary of Last Lecture

A 2-bit/step SAR ADC structure with one radix-4 DAC

2.4 A/D Converter Survey Linearity

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

2. ADC Architectures and CMOS Circuits

A 2GS/s 14-bit currentsteering. technology for wireless transmitter

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

System on a Chip. Prof. Dr. Michael Kraft

ERROR CORRECTION TECHNIQUES IN HIGH-SPEED A/D AND D/A CONVERTERS

A 10-bit, 100 MS/s Analog-to-Digital Converter in 1-µm CMOS

Optimizing the Stage Resolution of a 10-Bit, 50 Ms/Sec Pipelined A/D Converter & Its Impact on Speed, Power, Area, and Linearity

FUNCTIONAL BLOCK DIAGRAM DIGITAL VIDEO ENGINE

High Speed Flash Analog to Digital Converters

EE 435. Lecture 32. DAC Design. Parasitic Capacitances. The String DAC

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

A simple 3.8mW, 300MHz, 4-bit flash analog-to-digital converter

Improved Design Methodology for High-Speed High-Accuracy Current Steering D/A Converters

Analog to Digital Converters (ADC) Rferences. Types of AD converters Direct (voltage comparison)

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

EE 435. Lecture 41. ADC Design

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters

Transcription:

CMOS ADC & DAC Principles Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 201

Table of contents Definitions Digital-to-analog converters Resistive Capacitive Current steering Analog-to-digital converters Integrating Successive approximation Algorithmic Flash / Two-step Interpolating / Folding Pipeline Willy Sansen 10-05 202

ADC & DAC Output code Analog output (wrt V ref ) 1 Ideal 0.5 Ideal 0 0.5 1 Analog input (with respect to V ref ) 0 Input code Willy Sansen 10-05 203

1 DACs Resolution Analog output (wrt V ref ) Ideal V OUT = V REF B IN b 1 b = V REF ( + 2 b + 3 b + N ) 2 1 2 2 2 3 2 N V LSB = V REF 2 N 0 Input code Resolution N b 1 is Most Significant bit (MSB) b N is Least Significant bit (LSB) Willy Sansen 10-05 204

The quantisation error of a DAC 1 P Noise = ε 2 dε = /2 - /2 2 12 V ptp = 2 N P Signal = V 2 ptp 8 3 SNR = 2 2N 2 SNR = 6 N + 1.76 db Willy Sansen 10-05 205

Static specs : INL & DNL Analog output Analog output Monotonicity Digital input Digital input Differential Nonlinearity : DNL = Y OUT (B) - Y OUT (B-1) - 1 LSB Integral Nonlinearity : INL = Y OUT (B) - Y OUT,id (B) Willy Sansen 10-05 206

Dynamic specifications Willy Sansen 10-05 207

Spectral content : Spurious free dynamic range db SFDR Frequency (Hz) Willy Sansen 10-05 208

Output SNR versus input Signal Limited by distortion -3 db Willy Sansen 10-05 209

Table of contents Definitions Digital-to-analog converters Resistive Capacitive Current steering Analog-to-digital converters Integrating Successive approximation Algorithmic Flash / Two-step Interpolating / Folding Pipeline Willy Sansen 10-05 2010

Resistor string DAC For 10 bit: 1023 resistors and 1024 switches!! Resistive matching! Willy Sansen 10-05 2011

Binary weighted resistor DAC One Resistor and Switch per bit No guaranteed monotonicity (glitches!) Willy Sansen 10-05 2012

R-2R DAC I R I R 2 I R 4 I R 8 I R I R 2 I R 4 I R 8 I R I I R + + R + 2 4 I R 8 Smaller area in Resistors! Willy Sansen 10-05 2013

3-bit charge redistribution DAC Phase Φ1 Better capacitive matching! Willy Sansen 10-05 2014

4-bit Current steering DAC Resolution limited by Mismatch in the Current sources! Glitches! Willy Sansen 10-05 2015

The Binary and thermometer codes Monotonicity guaranteed! Willy Sansen 10-05 2016

Thermometer-code Current steering DAC Willy Sansen 10-05 2017

Binary, unary, segmented DAC σ ( I) = Binary 2 N σ (I) - 1 LSB I Unary σ (I) I LSB Segmented B LSBs & N-B MSBs 2 B+1 σ (I) - 1 LSB I Van den Bosch,.., Kluwer 2004 Willy Sansen 10-05 2018

σ(i)/i versus resolution σ (I) I = 1 2 C 2 N C 6.2 10-4 for INL_yield = 90% Yield = 10 % 50 % 90 % 99.7 % Van den Bosch,.., Kluwer 2004 Willy Sansen 10-05 2019

Switching schemes is centroide! Van den Bosch,.., Kluwer 2004 Miki, JSSC Dec.86, 983-988 Willy Sansen 10-05 2020

INL error for different switching schemes Hierarchical symmetrical scheme (type A) Willy Sansen 10-05 2021

DAC Design: Static Accuracy INL_yield = percentage of functional D/A converters with an INL specification smaller than half an LSB. σ (I) I INL_yield = f (mismatch) = f ( ) WL = 1 4A 2 [ A 2 VT β + ] σ (I) 2 ( ) 2 (V GS -V T ) 2 σ (I) I I 1 2 C 2 N High yield σ (I) small I Large current source area σ (I unit )/I unit = 0.25 % Willy Sansen 10-05 2022

DAC Design: Calculation W and L W L = I LSB K (V GS -V T ) 2 WL = 1 4A 2 [ A 2 VT β + ] σ (I) 2 ( ) 2 (V GS -V T ) 2 I W = 1.8 µm L = 30 µm σ (I)/I = 0.0025 V GS -V T = 1 V For 0.35 µm CMOS A β 2 %µm A VT 7 mvµm Willy Sansen 10-05 2023

Floorplan 10-bit segmented DAC M sw M cas M cs Van den Bosch,.., JSSC March 01, 315-324 Willy Sansen 10-05 2024

Required output impedance versus resolution Van den Bosch,.., Kluwer 2004 JSSC March 01, 315-324 10 bit 1GB/s INL = 99.7 % requires σ(i)/i < 0.5 % : W = 2 µm & L = 8 µm Willy Sansen 10-05 2025

10-bit 1 GS/s Nyquist Current steering CMOS DAC Current steering DAC 10-bit 1 GS/s 0.35 µm CMOS 110 mw Van den Bosch,.., JSSC, March 01, 315-324 Willy Sansen 10-05 2026

SFDR (db) versus relative signal frequency f signal / f clock Willy Sansen 10-05 2027

FOM (MHz/mW) vs inverse area FOM = 2 N f s (-6dB) P 2 N /area (mm 2 ) Willy Sansen 10-05 2028

Table of contents Definitions Digital-to-analog converters Resistive Capacitive Current steering Analog-to-digital converters Integrating Successive approximation Algorithmic Flash / Two-step Interpolating / Folding Pipeline Willy Sansen 10-05 2029

Speed Resolution Limits ADC FOM = 4kT BW DR P 2 N 2BW P Willy Sansen 10-05 2030

Dual-slope (integrating) ADC Time 1 is constant : T 1 = 2 N T clk V in V x = T 1 R 1 C 1 Time 2 : V x decreases with constant slope : V V x = ref V in T 2 T B out = 2 = T 1 R 1 C 1 V in V V ref ref Johns, Martin, Wiley 1997 Willy Sansen 10-05 2031

Operation of integrating ADC V in V Time 1 : V x = T ref 1 Time 2 : V R 1 C x = T 2 1 R 1 C 1 T 2 = T 1 V in V ref Willy Sansen 10-05 2032

Integrating ADC Advantages: High resolution High linearity Low circuit complexity Mainly for voltmeters, Eliminates mains supply 50 Hz if T1 is n x 20 ms Disadvantages: Very slow : Worst case for V in = V ref : 2 2n+1 clock cycli required! Ex. For n = 16 bit (64000) and F clock = 1 MHz : 7.6 s conversion time Mainly for voltmeters, Willy Sansen 10-05 2033

Successive-approximation ADC Divide interval by 2 ; Determine bit : < 1 : 0 b 1 = MSB < 0.5 : 0 b 2 > 0.25 : 1 b 3 0 0.25 0.5 1 V > 0.375 : 1 b 4 < 0.4375 : 0 b 5.. Johns, Martin, Wiley 1997 Willy Sansen 10-05 2034

5-bit Charge redistribution ADC Σ = 2 N C V x 0 1. Sample Mode Accuracy limited by capacitive matching to 10-12 bit Speed limited by R switch C time constants McCreary, JSSC Dec 75, 371-379 Johns, Martin, Wiley 1997 Willy Sansen 10-05 2035

5-bit Charge redistribution ADC V x = -V in 2. Hold mode Bottom plate C to V ref Willy Sansen 10-05 2036

5-bit Charge redistribution ADC V x = -V in + V ref 2 3. Bit cycling Bottom plate C to V ref if V in > V ref /2 SAR 1 leave C b1 to V ref if V in < V ref /2 SAR 0 leave C b1 to Gnd : try C b2 : try C b2 Willy Sansen 10-05 2037

Charge redistribution ADC Bottom plate C to V ref Charge redistribution ADC halves V ref in each cycle Algorithmic ADC doubles V error in each cycle Willy Sansen 10-05 2038

Algorithmic (or cyclic) ADC Advantage : small amount of analog circuitry Difficulty : accuracy x2 Gain amplifier (fully diff. ; C par insensitive) Johns, Martin, Wiley, 2003 Willy Sansen 10-05 2039

Flash converter 3-bit flash ADC : fastest 2 3 comparators input cap. ~ 2 3 limited to 6 bit (1 2 GS/s) Willy Sansen 10-05 2040

Evolution in ADC s Uyttenhove, KULeuven, 2003 Willy Sansen 10-05 2041

Subranging (or two-step) ADC 8-bit two-step ADC : less comparators introduces latency 2 8 = 256 comp. now 32! All circuits : 8b accurate Digital correction required! Johns, Martin, Wiley 1997 Willy Sansen 10-05 2042

Interpolating saves amplifiers saturating linear near threshold threshold latch saturating Input amplifiers which saturate Van de Grift, JSSC Dec. 87, 944-953; Steyaert CICC 1993 Willy Sansen 10-05 2043

Interpolating ADC 4-bit interpolating ADC Resistive interpolation leave out 3 out of 4 amps Less power consumption Less input capacitance Johns, Martin, Wiley 1997 Willy Sansen 10-05 2044

Transfer curves Gain ~ 10 Only the zero crossings carry info Resistors generate the intermediate outputs Resistors average out offsets, etc. Add series resistors to latch inputs to equalize delay times Willy Sansen 10-05 2045

Averaging with output currents 2 1 I 2a = 3 I 1 + 3 I 2 1 2 I 2b = 3 I 1 + 3 I 2 Interpolating by 3 between output currents I 1 & I 2 Requires 1/3 input amps.: C in /3 Steyaert CICC 93 Willy Sansen 10-05 2046

Interpolating/Averaging ADC - 1st amp Current mirror interpolator Steyaert CICC 93 Roovers JSSC July 96, 938-944 Willy Sansen 10-05 2047

Interpolating : limitations C mirror (ff) f -3dB (MHz) Number of transistors Willy Sansen 10-05 2048

Folding ADC Analog preprocessing folded signal V in folding circuit fine ADC LSBs coarse ADC MSBs folded signal Folding rate 8 Less comparators Same input capacitance 1 2 3 4 5 6 7 8 V in Willy Sansen 10-05 2049

4-bit Folding ADC 4 folding regions V in starts from 0 to 1/4 : 0001 0011 0111 1111 from 1/4 to 1/2 : 1110 1100 1000 0000 = 4 latches 4-bit flash: 16 comp. folding: 8 comp. Johns, Martin, Wiley 1997 Willy Sansen 10-05 2050

Folding block realization Folding rate of 4 Differential pairs in parallel! Large C in! Output at higher freq. = f in x folding rate Johns, Martin, Wiley 1997 Willy Sansen 10-05 2051

Folding + interpolation Folding rate of 4 Interpolate by 2 Lower C in! Van Valburg JSSC Dec. 92, 1662-1666 Johns, Martin, Wiley 1997 Willy Sansen 10-05 2052

Pipelined ADC : n k and single bit per stage Algorithmic conversion in pipeline! n k bit per stage latency of N clock periods Limited to 12 bit by amp. Digital error correction 1 bit per stage Johns, Martin, Wiley 1997 Willy Sansen 10-05 2053

Pipelined ADC block diagram New sample each clock cycle Johns, Martin, Wiley 1997 Willy Sansen 10-05 2054

Multiplying DAC DAC + Gain Are merged In one building block: S/H Ni bits ADC Ni bits DAC Multiplying DAC Willy Sansen 10-05 2055

Multiplying DAC : Phase 1 Vres(i) Cf Cs Vres(i+1) VDAC Φ1 Vres(i) Cf Cs Vres(i+1) Willy Sansen 10-05 2056

Multiplying DAC : Phase 2 Vres(i) Cf Cs Vres(i+1) VDAC Φ2 Cf VDAC Cs Cs Vres(i+1) = Vres(i) + (Vres(i) - VDAC) Cf G = 1 + Cs Cf = 2 if Cs = Cf Willy Sansen 10-05 2057

Non-idealities versus Cs 0.25 µm CMOS f s = 400 MHz Uyttenhove, Kuleuven, 2003 Willy Sansen 10-05 2058

Comparison ADCs Resolution (bits) Clock cycles Per output sample 1 10 100 1000 Willy Sansen 10-05 2059

Impact of device mismatch on resolution/power Two transistors : σ 2 1 (Error) ~ WL σ VT = A VT WL (Accuracy) 2 ~ WL By design : increasing W increases I DS and Power decreasing L increases the speed Speed x (Accuracy) Power = Technol. constant Ref. Kinget,... Analog VLSI.. pp 67, Kluwer 1997. Willy Sansen 10-05 2060

Power and mismatch/noise Accuracy 1/σ 2 (V os ) ~ Area / A VT Dynamic range DR = V srms / (3 σ (V os )) Capacitance C ~ C ox Area Power P = 8 f C V 2 srms Mismatch : P = 24 C ox A VT 2 f DR 2 Noise : P = 8 kt f DR 2 Willy Sansen 10-05 2061

Noise vs mismatch for DR Mismatch Noise Ref. P.Kinget,... Analog VLSI.. page 67, Kluwer 1997. Willy Sansen 10-05 2062

ADC limitations Ref Walden IEEE Selected Areas Comm. April 1999, 539-550; Uyttenhove 2003 Willy Sansen 10-05 2063

References D. Johns & K. Martin, Analog Integrated Circuit Design, Wiley 1997 P. Jespers, Integrated Converters, Oxford Univ. Press, 2001 B. Razavi, Principles of Data Conversion System Design, IEEE Press 1995 K. Uyttenhove, High-speed CMOS Analog-to-digital converters, PhD KULeuven, 2003 A. Van den Bosch, High-resolution high-speed CMOS current-steering Digital-to-Analog Converters, Kluwer Ac. Press 2004. R. Van de Plassche, Integrated Analog-to-digital and Digital-to-Analog converters, Kluwer Ac. Press, 1994 Willy Sansen 10-05 2064

Table of contents Definitions Digital-to-analog converters Resistive Capacitive Current steering Analog-to-digital converters Integrating Successive approximation Algorithmic Flash / Two-step Interpolating / Folding Pipeline Willy Sansen 10-05 2065