HSPICE. Chan-Ming Chang

Similar documents
SPICE Simulation Program with Integrated Circuit Emphasis

HSPICE. Speaker Jh-He Lin

Introduction to Full-Custom Circuit Design with HSPICE and Laker

MOSFET: Mxxx nd ng ns nb modelname W=value L=value Ad As Pd Ps

Lecture 7: SPICE Simulation

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

Circuit Simulation Using SPICE ECE222

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013

Chapter 19. Performing Cell Characterization

THE SPICE BOOK. Andrei Vladimirescu. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore

Laboratory Lecture 4

Mentor Analog Simulators

SPICE for Power Electronics and Electric Power

Introduction to SwitcherCAD

SPICE FOR POWER ELECTRONICS AND ELECTRIC POWER

WinSpice. The steps to performing a circuit simulation with WinSpice are:

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit.

Simulation Using WinSPICE

EECE 488: Short HSPICE. Tutorial. Last updated by: Mohammad Beikahmadi January Original presentation by: Jack Shiah

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE

Figure 1. Main window (Common Interface Window), CIW opens and from the pull down menus you can start your design. Figure 2.

TAMU ECEN 751 Spring Project 1: Matlab Circuit Parser User s Manual

Hands-on Homework 2: Modeling transmission lines

Circuit Simulation with SPICE OPUS

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Topic 2. Basic MOS theory & SPICE simulation

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Experiment 2 Introduction to PSpice

NGSPICE- Usage and Examples

EEC 216 W08 Problem Set #1 Solutions

Yuan-Piao Lee Te-Hsiu Chen Chienkuo Technology University, ChungHua, Taiwan, ROC

Modeling MOS Transistors. Prof. MacDonald

A Short SPICE Tutorial

A brief introduction on HSPICE. Siavash Kananian Sharif University of Technology Electronics III

Lab 3: Circuit Simulation with PSPICE

Elad Alon HW #1: Circuit Simulation EECS 141 Due Thursday, Aug. 30th, 5pm, box in 240 Cory

TTL LOGIC and RING OSCILLATOR TTL

Lecture 3: Sizing & Simulation

Experiment #1 Introduction to SPICE

Simulation Program with Integrated Circuits Emphasis = SPICE

Mor M. Peretz Power Electronics Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev, ISRAEL

Techcode. High Efficiency 1MHz, 2A Step Up Regulator TD8208. General Description. Features. Applications. Package Types DATASHEET

A Brief Handout for Introduction to

Introduction to LTSpice

1.3 An Introduction to WinSPICE

AMPLIFIERS MACRO-MODELING

LTSpice Basic Tutorial

Gunning Transceiver Logic Interface Bus Design Project

FP kHz 7A High Efficiency Synchronous PWM Boost Converter

Intelligent Systems Group Department of Electronics. An Evolvable, Field-Programmable Full Custom Analogue Transistor Array (FPTA)

DIGITAL CIRCUIT SIMULATION USING HSPICE

Experiment #1 Introduction to SPICE

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

SPICE 4: Diodes. Chris Winstead. ECE Spring, Chris Winstead SPICE 4: Diodes ECE Spring, / 28

Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach

Faculty of Engineering 4 th Year, Fall 2010

ESD-Transient Detection Circuit with Equivalent Capacitance-Coupling Detection Mechanism and High Efficiency of Layout Area in a 65nm CMOS Technology

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 781 HIGH EFFICIENCY SYNCHRONOUS NONISOLATED FLYBACK

Using TDK SPICE Netlist Library and Its Basic Applications

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence).

PREFACE 5 THE AUTHOR 6 INDEX 7 FOREWORD 21 1 LTSPICEIV: INTRODUCTION AND HISTORY 25

Power Conditioning Electronics Dr. Lynn Fuller Webpage:

MOS IC Amplifiers. Token Ring LAN JSSC 12/89

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V

High-Speed Serial Interface Circuits and Systems

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

CMOS synchronous Buck switching power supply Raheel Sadiq November 28, 2016

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

FP6276B 500kHz 6A High Efficiency Synchronous PWM Boost Converter

Introduction to PSpice

The University of Evansville SwitcherCAD III Component Library

EE 230 Lab Lab 9. Prior to Lab

EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill

Techcode TD8215. Step-up DC/DC Controller. General Description. Features. Applications. Pin Configurations DATASHEET TD8215 INV SCP VDD CTL

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC

Lab 7 PSpice: Time Domain Analysis

A radiation-hardened optical receiver chip

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

PSPICE A brief primer

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering

Electronic Circuit Casebook. Dr. Lynn Fuller

SIMetrix/ Advanced Power System Simulation. SIMPLIS Reference Manual

Introduction to Matlab, HSPICE and SUE

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Set-up of Assura RCX-HF tools for the AMS S35 process. Configuration files and usage guide. 1

Practice Homework Problems for Module 1

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

A Study of PN Junction Diffusion Capacitance of MOSFET in Presence of Single Event Transient

Fall Modeling Skin Effect. Featuring: Noise Source Macro. Modeling Skin Effect. Common Digital Mistakes MC5 File Hierarchy

Differential Amplifier Design

RT9266B. Tiny Package, High Efficiency, Step-Up DC/DC Converter. General Description. Features. Applications. Ordering Information RT9266B

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

4.4 Applications of Transient Analysis

FP V, 3.1A, 550KHz High Efficiency Low Ripple Synchronous Step-Up Converter. Description. Features. Applications.

Digital Integrated Circuits

Transcription:

HSPICE Chan-Ming Chang

Outline Declaration Voltage source Circuit statement SUBCKT of circuit statement Measure Simulation

Declaration ***** SPICE COURSE EXAMPLE INVERTER LJC *****.LIB 'mm018.l' tt.global Vdd.TRAN 1ns 1000ns Vdd.OPTION post ***** VOLTAGE SOURCE ***** Mp0 Vsource0 Vdd 0 1.8v Vsignal0 in 0 pulse(1.8v 0 0ns 5ns 5ns 95ns 200ns) in out ***** CIRCUIT STATEMENT ***** Mn0 Mp0 out in Vdd Vdd pch L=0.18u W=0.44u M=1 Mn0 out in 0 0 nch L=0.18u W=0.22u M=1 ***** MEASURE ***** GND.MEAS TRAN out_rise_delay TRIG v(in) VAL=0.9v TD=0 FALL=3 TARG v(out) VAL=0.9v RISE=3.MEAS TRAN pwr AVG POWER.END

Declaration.LIB Declare the libraries you want to used Syntax.LIB Fname Example.LIB 'mm018.l' tt

Declaration.GLOBAL Declare a global variable Syntax.GLOBAL node1 node2 node3... Example.GLOBAL Vdd

Declaration.TRAN 1ns 1000ns Print the transient analysis every 1 ns for 1000 ns.option post Write an output file ending in.tr0 containing the simulation waveforms

Voltage source ***** SPICE COURSE EXAMPLE INVERTER LJC *****.LIB 'mm018.l' tt.global Vdd.TRAN 1ns 1000ns Vdd.OPTION post ***** VOLTAGE SOURCE ***** Mp0 Vsource0 Vdd 0 1.8v Vsignal0 in 0 pulse(1.8v 0 0ns 5ns 5ns 95ns 200ns) in out ***** CIRCUIT STATEMENT ***** Mn0 Mp0 out in Vdd Vdd pch L=0.18u W=0.44u M=1 Mn0 out in 0 0 nch L=0.18u W=0.22u M=1 ***** MEASURE ***** GND.MEAS TRAN out_rise_delay TRIG v(in) VAL=0.9v TD=0 FALL=3 TARG v(out) VAL=0.9v RISE=3.MEAS TRAN pwr AVG POWER.END

Voltage source Vxxx Syntax Vname n+ n- val Example Vsource0 Vdd 0 1.8v V1 node1 0 5v

Voltage source Pulse source function: PULSE Syntax PULSE ( V1 V2 Tdelay Trise Tfall duty_cycle_width Period ) V2 V1 Tdelay Trise duty_cycle_width Tfall duty_cycle_width Period

Voltage source Example V1 node1 node2 PULSE ( 0V 5V 10ns 10ns 10ns 40ns 100ns) 5 0 10 20 30 40 50 60 70 80 90 100 110 120 130 V2 node3 node4 PULSE ( 5V 0V 10ns 10ns 10ns 40ns 100ns) 5 0 10 20 30 40 50 60 70 80 90 100 110 120 130

Voltage source Piecewise linear source function: PWL Syntax PWL (t1 v1, t2 v2, ) Example V1 node1 0 PWL (0n 0v, 20n 0v, 21n 3v, 25n 3v, 26n 0v,30n 0v)

Circuit Statement ***** SPICE COURSE EXAMPLE INVERTER LJC *****.LIB 'mm018.l' tt.global Vdd.TRAN 1ns 1000ns Vdd.OPTION post ***** VOLTAGE SOURCE ***** Mp0 Vsource0 Vdd 0 1.8v Vsignal0 in 0 pulse(1.8v 0 0ns 5ns 5ns 95ns 200ns) in out ***** CIRCUIT STATEMENT ***** Mn0 Mp0 out in Vdd Vdd pch L=0.18u W=0.44u M=1 Mn0 out in 0 0 nch L=0.18u W=0.22u M=1 ***** MEASURE ***** GND.MEAS TRAN out_rise_delay TRIG v(in) VAL=0.9v TD=0 FALL=3 TARG v(out) VAL=0.9v RISE=3.MEAS TRAN pwr AVG POWER.END

Circuit Statement Instance and element names C Capacitor Cxxx Node1 Node2 Value D Diode E,F,G,H Dependent current and voltage controlled source I Current J JFET or MESFET K Mutual inductor L Inductor M MOSFET Q BJT R Resistor O,T,U Transmission line V Voltage source X Subcircuit call

Circuit Statement MOSFET element Syntax Mxxx nd ng ns nb mname <L=val> <W=val> <M=val> Example M0 d0 g0 s0 b0 nch L=0.18u W=0.22u M=1 M1 d1 g1 s1 b1 pch L=0.18u W=0.22u M=4 M1 d1 g1 s1 b1 pch L=0.18u W=0.88u M=1 D S G B G B NMOS S PMOS D

Circuit Statement Resistance: R R1 node1 node2 10k Voltage source: V V4 node3 node4 1v Capacitor: C C2 node2 node4 10p MOS: M M3 node2 node3 node4 node4 + nch W=0.22u L=0.18u M=1 node3 V V=1 node4 node1 R=10k node2 C=10p

Circuit Statement Units Ohm *Resistance Farad *Capacitor Henry *Inductor Scales T 10 12 G 10 9 Meg 10 6 K 10 3 M 10-3 U 10-6 N 10-9 P 10-12 F 10-15

SUBCKT of Circuit Statement.SUBCKT Syntax.SUBCKT subname Node1 <Node2... > SUBCKT circuit statement.ends subname Subcircuit calls.xinstantname n1 <n2 n3...> Subname <param=val...> <M=val>

SUBCKT of Circuit Statement ***** SUBCKT inverter circuit statement *****.SUBCKT inverter inv invb Mp0 invb inv Vdd Vdd pch L=0.18u W=0.66u M=1 Mn0 invb inv GND GND nch L=0.18u W=0.22u M=1.ENDS inverter ***** circuit statement ***** Xinv1 in x inverter Xinv2 x out inverter inv Vdd Mp0 invb Mn0 GND inverter Xinv1 Vdd Xinv2 Vdd in x out GND GND

Measures ***** SPICE COURSE EXAMPLE INVERTER LJC *****.LIB 'mm018.l' tt.global Vdd.TRAN 1ns 1000ns Vdd.OPTION post ***** VOLTAGE SOURCE ***** Mp0 Vsource0 Vdd 0 1.8v Vsignal0 in 0 pulse(1.8v 0 0ns 5ns 5ns 95ns 200ns) in out ***** CIRCUIT STATEMENT ***** Mn0 Mp0 out in Vdd Vdd pch L=0.18u W=0.44u M=1 Mn0 out in 0 0 nch L=0.18u W=0.22u M=1 ***** MEASURE ***** GND.MEAS TRAN out_rise_delay TRIG v(in) VAL=0.9v TD=0 FALL=3 TARG v(out) VAL=0.9v RISE=3.MEAS TRAN pwr AVG POWER.END

Measures.MEAS Syntax.MEASURE <AC DC TRAN> result TRIG... TARG... TRIG trig_var VAL = trig_val <TD = time_delay> <CROSS = c> <RISE = r> <FALL = f> TARG targ_var VAL = targ_val <TD = time_delay> <CROSS = c LAST> <RISE = r LAST> <FALL = f LAST>.MEAS TRAN pwr AVG POWER

Measures Example.MEAS TRAN out_rise_delay TRIG v(in) VAL=0.9v TD=0 FALL=3 + TARG v(out) VAL=0.9v RISE=3 FALL=1 FALL=2 FALL=3 FALL=4 RISE=1 RISE=2 RISE=3 RISE=4

Simulation Compile your file: hspice Output file

Simulation View waveform by nwave 1. 3. 2. 4.

Simulation 5. 6. 7.

Simulation

Simulation View the measure results by vi Quit vi command => :q!