Pushbutton Transmitter Device PTM 215Z. September 17, 2013 USER MANUAL V1.0. Patent protected: US 6,747,573 US 7,019,241 Further patents pending

Similar documents
Pushbutton Transmitter Device PTM 215 ZGPGP. June 10, 2014 USER MANUAL V1.0. Patent protected: US 6,747,573 US 7,019,241 Further patents pending

EASYFIT Bluetooth Single / Double Rocker Wall Switch

USER MANUAL. PTM 210 / PTM 215 / PTM 210U / PTM 210J Pushbutton Transmitter Modules

Pushbutton Transmitter Device PTM 210 / PTM 215 PTM 210U / PTM 210J. June 14, 2013 USER MANUAL

ZigBee Single and Dual Rocker Switch USER MANUAL. Part Numbers: ZBT-S1AWH & ZBT-S2AWH (white)

Pushbutton Transmitter Device PTM200. August 26, 2009 USER MANUAL V1.30

FMT4R FM Transmitter User s manual

2.4 GHz Zigbee Generic Switch Pushbutton Transmitter Module

Energy Harvester ECO 100

Pushbutton Transmitter Device PTM 200

APM 6998 WiFi Module Manual

PTM 215ZE 2.4 GHz IEEE Pushbutton Transmitter Module

Murata Bluetooth mesh Node. Installation Guide

CARE +MAINTENANCE Cleaning Important Safety Instructions Water Drop Heat Battery Charging Repair

User s Manual Wireless Keyboard/Mouse & NANO Receiver MD-5110/MM-5110 & DG-5110

LOUIS VUITTON 1. Louis Vuitton Echo, locate your Horizon luggage in airports Battery indicator light. Light sensor to detect opening

System overview. be connected: Components that can. 1. OKIMAT IPS OM Massage motor. 7. Optional: Junction cable

1. Constitution of the Unit Assy-Wireless Charging ( WPC ) for vehicle

FOR AVLEX ONLY MT-24A. User Guide. 2.4 GHz Digital Stationary Transmitter

5.8G Wireless Audio Transceiver/Receiver Module DWHP83

Piezo Transmitter Module PTM 100

General Safety and Precautions 1. Read all of the information in the owner s manual and other included product information in the packaging before

WIFI Control box UserManual

Link Mobile Gateway User Guide A ProVIEW System Component

Transponder Reader TWN4 MultiTech 3 Quick Start Guide

VIBRATION AND TEMPERATURE SENSOR (FY01) USER GUIDE (For FCC/IC Certification) Version: 0.7

Copyright Autoliv Inc., All Rights Reserved

ACUII-06 User Manual (NAS)

PA421B PA821B. Front Panels. Included Components. Features. Model Variations. Antenna Combiner

OPERATION MANUAL WARNING

Blue Node. User Manual

SYSTEM REQUIREMENTS (Windows) Windows XP(Service Pack 2 or later) or vista 3.2GHz Pentium 4 or faster Minimum 1GB of system RAM

User Guide. ACT-50H / ACT-52H Handheld Transmitter

User Guide. Do not copy or forward without prior approvals MIPRO. Specifications and design subject to change without notice.

User Manual. 1. Introduction. 2. Features

EE1941XS/EN1941XS One-Way Serial RF Module Installation and Operation Manual

EE1941/EN1941/EN One-Way Binary RF Module Installation and Operation Manual

PTM 535Z 2.4 GHz Pushbutton Transmitter. 21 July 2017 USER MANUAL. PTM 535Z 2.4 GHZ Pushbutton Transmitter

Icon Description UP ( ) 1 BACK ( ) 4 PAGE ( )

MOVADO.COM/SMARTSUPPORT

DOWNLOAD KASA ADD TO KASA INSTALL AND POWER UP SAFETY FIRST

XT-4850C FCC ID: GKM-XT4850C IC: IC: 10281A-XT4850C

Polycom VoxBox Bluetooth/USB Speakerphone

Universal 1-channel switching receiver RCM 255

Alcatel-Lucent 8340 Smart IP-DECT AP. Installation Manual

802.11a/n/b/g/ac WLAN Module AMB7220

StreamStick by NAV-TV is a USB-powered, HI-FI Bluetooth 4.0 audio streaming module for automotive and home use. Make ANY stereo (equipped with AUX

StreetSounds STS-170-MMST Mobile Master. User Guide

16+ HS300. Instructions for use. One Key Start/One Key Landing Function Headless Mode / One Key Return Altitude Hold Mode

1. Open Mi Drone APP, select Next button. 1. Connect MiRC_XXXXXX device, the default key is

P/N: TMPRO3PLUS SERVICE AND WARRANTY

User Manual. 1. Introduction. 2. Features

FCC Certification Notice: IC Certification

testosaveris 2 User Manual testo Saveris 2Introduction

STREETSOUNDS STS-170-FMST USER GUIDE V1.0. Fixed Master STS-170-FMST. User Guide V1.1 August 25,2018

ihealth Wireless Body Analysis Scale OWNER S MANUAL

Vehicle IoT Gateway VG34 DATASHEET OVERVIEW HIGHLIGHTS

ISTATION-N (Integration Station) User Manual

Tork EasyCube. User Manual.

EE1941/EN1941 One-Way Binary RF Module Installation and Operation Manual E

SIMATIC Ident RFID systems SIMATIC RF310R special version Scanmode Compact Operating Instructions

EE1941/EN1941 One-Way Binary RF Module Installation and Operation Manual D

2011 Shure Incorporated 27A15021 (Rev. 2) *27A15021* Printed in China

v Pairing Instructions for: GENERAL MOTORS REPLACEMENT FLIP KEYS

Need Help? SA /

Wireless Compliance Statements

MorningLinc INSTEON Morning Industry RF Doorknob/Deadbolt Controller

Evaluation Kit ATA8520-EK1-F and Extension Board ATA8520-EK3-F (US Version) Kit Content ATAN0157 APPLICATION NOTE

GNSS multiconstellation, GPS+Glonass as a minimum; GSM; Accelerometer; SIM on Chip; Watch Dog; Power Management; RF transceiver; CAN Bus interface

HistoCore SPECTRA CV. RFID-Registration Registro de RFID Registro RFID تسجيل التعريف عن طريق الترددات الالسلكية

260X190mm/105 克铜版纸 / 黑白印刷

Pser G uide oduct Manual

INSTALLATION MANUAL ES-SUB-WIRELESS-KIT ES-SUB-WIRELESS-RCVR

or call

Illuminati Wireless Light and Color Meter Model IM100. User Manual

Regulatory Compliance Statement

TomTom Touch Fitness Tracker User Manual

User guide. SmartTags. NT3/SmartTagsST25a

Shields. Outdoor Shields Owner s Manual. Avoidance Solutions.

Universal 1-channel switching receiver EnOcean Easyfit RCM 250

Regulatory Compliance and Important Safety Information

CL-T05/06/07 Product Family Specification

Electronic Emission Notices

BT11 Hardware Installation Guide

User Manual. Z01-A19NAE26- Wireless LED Bulb Z02-Hub Sengled Hub. LED + Smart Control

EPM 300(C) Installation Test Tool User Manual Template for OEM Manufacturers/First Marketer

HOBO RX Wireless Sensor Network HOBO RXW Repeater (RXW-RPTR-xxx) Manual

Allure ECW-Sensor Series

User Guide. Digital. ACT-80HC Rechargeable Handheld Transmitter

DCH-G020 mydlink Connected Home Hub

TYWE2S DATASHEET. TYWE2S UserManual

TECHNICAL CUSTOMER DOCUMENTATION TCD MRR1Crn / MRR1CrnCR Hardware Part 5 - Radio Frequency Homologation: marking and user manual phrases

LoRa Module Datasheet

FOR TRAINING PURPOSES ONLY DATED MATERIAL. Aperio Hub AH20/AH30 Installation Instructions. ASSA ABLOY, the global leader in door opening solutions

Modulo User Guide. Part Number: AFERO-BL24-01 Rev: 1.0

800 Series Transmitters Owner s Manual

RFC1000. Wireless Transceiver for the RFOT, Therm A lert and RF2000A data loggers. Product User Guide

User Manual. MITSUMI WiFi Module MODEL DWM-W081

DS Keyfob Transmitter Data Guide

RF Receiver Modules RCM 142

Transcription:

Pushbutton Transmitter Device September 17, 2013 Patent protected: US 6,747,573 US 7,019,241 Further patents pending User Manual v1.0 July 2013 Page 1/17

REVISION HISTORY The following major modifications and improvements have been made to the first version of this document: No Major Changes 1.0 Initial Release Published by,,,,, phone ++49 (89) 6734 6890 All Rights Reserved Important! This information describes the type of component and shall not be considered as assured characteristics. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the EnOcean website: http://. As far as patents or other rights of third parties are concerned, liability is only assumed for devices, not for the described applications, processes and circuits. EnOcean does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. Devices or systems containing RF components must meet the essential requirements of the local legal authorities. The devices must not be used in any relation with equipment that supports, directly or indirectly, human health or life or with applications that can result in danger for people, animals or real value. Components of the devices are considered and should be disposed of as hazardous waste. Local government regulations are to be observed. Packing: Please use the recycling operators known to you. By agreement we will take packing material back if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or that we are not obliged to accept, we shall have to invoice you for any costs incurred. User Manual v1.4 July 2013 Page 2/17

TABLE OF CONTENT 1 GENERAL DESCRIPTION... 4 1.1 Basic Functionality... 4 1.2 Typical Applications... 5 1.3 Technical Data... 5 1.4 Mechanical Interface... 5 1.5 Environmental Conditions... 10 1.6 Ordering Information... 10 2 FUNCTIONAL DESCRIPTION... 11 2.1 Block Diagram... 11 2.2 Contact Nipples Designation... 12 2.3 Operating modes... 12 2.3.1 Normal Mode... 13 2.3.1.1 Security Parameters... 13 2.3.2 Commissioning Mode... 14 2.3.2.1 Radio Channel Selection... 14 2.3.2.2 Join Request... 14 2.4 Construction of application specific Switch Rockers... 15 2.5 Device Mounting... 15 2.6 Regulatory Notes... 16 2.6.1 FCC Regulatory Statement... 16 3 Transmission Range... 17 User Manual v1.4 July 2013 Page 3/17

1 GENERAL DESCRIPTION The radio transmitter device from EnOcean enables the implementation of wireless remote controls without batteries. Power is provided by a built-in electro-dynamic power generator. The device transmits data based on the 2.4GHz ZigBee Green Power standard. The outer appearance of is shown on the picture below. (1) Energy bow on both device sides (2) Contact nipples for switch rocker identification Rotation axis for pushbuttons or switch rocker Electro-dynamic powered radio transmitter device 1.1 Basic Functionality devices contain an electro-dynamic energy transducer which is actuated by a bow (1). This bow is pushed by an appropriate push button, switch rocker or a similar construction mounted onto the device. An internal spring will release the energy bow as soon as it is not pushed down anymore. When the energy bow is pushed down, electrical energy is created and a ZigBee Green Power radio telegram is transmitted. Releasing the energy bow similarly generates energy which is used to transmit a different ZigBee Green Power radio telegram. It is therefore possible to distinguish between radio telegrams sent when the energy bar was pushed and radio telegrams sent when the energy bar was released. By identifying these different telegrams types and measuring the time between pushing and releasing of the energy bar, it is possible to distinguish between Long and Short push button presses. This enables simple implementation of applications such as dimming control or blinds control including slat action. User Manual v1.4 July 2013 Page 4/17

The radio telegram identifies the status (pressed or not pressed) of the four contact nipples (2) when the energy bow was pushed or released. This enables the implementation of up to two switch rockers or up to four pushbuttons. 1.2 Typical Applications Typical applications are found in the following areas: Building installation Consumer electronics Light and door switches Key products include wall-mounted switches and handheld remote controls supporting up to two rockers or up to four pushbuttons. pushbutton transmitters are self-powered (no batteries) and therefore maintenance-free. They can be used in hermetically sealed systems or in remote (not easily accessible) locations. 1.3 Technical Data Power supply Antenna Internal electro-dynamic power generator actuated by the energy bow Internal PCB antenna Frequency 2.4GHz / IEEE 802.15.4 channels 11, 15, 20 or 25 (User selectable during commissioning) Data rate Conducted output power Button inputs ZigBee Device ID Security mode Transmission range Device identifier 1.4 Mechanical Interface 250 kbps (according to IEEE 802.15.4 standard) typ. 0dBm Up to four buttons 0x02 (ZigBee on / off switch) Unique device security key typ. 175 m free field / 20 m indoor Individual 32-bit ZGPD SrcId (factory programmed) Device dimensions (inclusive rotation axis and energy bow) 40.0 x 40.0 x 11.2 mm Device weight 20 g ± 1 g Energy bow travel / operating force 1.8 mm / typ. 8 N At room temperature Only one of the two energy bows may be actuated at the same time! Restoring force at energy bow typ. 0.7 N to 4 N Minimum restoring force of 0.5 N is required for correct operation Number of operations at 25 C typ. 100.000 actuations tested according to VDE 0632 / EN 60669 Cover material Hostaform (POM) Energy bow material PBT (50% GV) User Manual v1.4 July 2013 Page 5/17

without antenna, tilted view (including rocker catwalks) 1) these catwalks are not needed when using one single rocker only 2) dimensions of rocker part, top view (note cut A, B and C marking) User Manual v1.4 July 2013 Page 6/17

, cut A 2) dimensions of rocker part, cut B and C User Manual v1.4 July 2013 Page 7/17

Hatched areas: support planes rear view User Manual v1.4 July 2013 Page 8/17

2) dimensions of rocker part, side view If the rocker is not mounted on the rotation axis of several tolerances have to be considered! The measure from support plane to top of the energy bow is 7.70 mm +/- 0.3 mm! The movement of the energy bow must not be limited by mounted rockers! Catwalks of the switch rocker must not exert continuous forces on contact nipples! User Manual v1.4 July 2013 Page 9/17

1.5 Environmental Conditions Operating temperature -5 C up to +45 C Storage temperature -25 C up to +65 C Humidity 0% to 95% r.h., non-condensing 1.6 Ordering Information Type Ordering Code S3071-A215 User Manual v1.4 July 2013 Page 10/17

2 FUNCTIONAL DESCRIPTION 2.1 Block Diagram Status Data Processor Contact Nipples HF Ant Pushed/Released DC Power Energy Bow N S Power Converter Block diagram of Energy Bow / Power Generator Converts the motion of the energy bow into electrical energy. Power Converter Converts the energy of the power generator into a stable DC supply voltage for the device electronics. Processor Determines the status of the contact nipples and the energy bow, encodes this status into a data word, generates the proper radio telegram structure and sends it to the radio transmitter. Radio transmitter Transmits the data in the form of a series of short ZigBee Green Power radio telegrams. User Manual v1.4 July 2013 Page 11/17

2.2 Contact Nipples Designation devices provide four contact nipples. They are grouped into two channels (Channel A and Channel B) each containing two contact nipples (State O and State I). The state of all four contact nipples (pressed or not pressed) is transmitted together with a unique device identification (fixed 32-bit ZGPD SrcId) whenever the energy bow is pushed or released. The picture below shows the arrangement of the four nipples and their designation: STATE O A B CHANNEL I Contact nipple designation 2.3 Operating modes supports two operating modes: Normal mode In this mode, data telegrams are sent according to the button(s) pressed Commissioning mode In this mode, the Radio channel is changed according to the button pressed and a Join telegram is transmitted These two modes are outlined in more detail in the following chapters. User Manual v1.4 July 2013 Page 12/17

2.3.1 Normal Mode In normal mode, transmits secure data telegrams reflecting the state of the four device buttons whenever the energy bar is pressed or released. The state of the four buttons is encoded in one data byte of payload. The data telegrams sent when the energy bar is pressed are different from the ones sent when the energy bar is released. In the current implementation, the following correspondence between energy bar state, contact nipple state and data payload is implemented: - Energy bar pressed - No contact nipple (energy bar only) or contact nipple B0: 0x22 - Contact nipple A0: 0x10 - Contact nipple A1: 0x11 - Contact nipple B1: 0x12 - Contact nipples A1 and B1: 0x62 - Contact nipples A0 and B0: 0x64 - All other contact nipple states: No action - Energy bar released - Contact nipples A1 and B1: 0x63 - Contact nipples A0 and B0: 0x65 - All other contact nipple states: No action 2.3.1.1 Security Parameters transmits data in secured format in accordance with the ZigBee Green Power Specification Revision 23, Version 1.0 using the following security parameters: - zgpsecuritylevel is 0b10 Full 4Byte frame counter and full 4Byte MIC - zgpsecuritykeytype is 0b100 Out of the box ZGPD Key Each device contains its own unique and random security key. This key will be transmitted to the host system in the Join request as outlined in the following chapter. User Manual v1.4 July 2013 Page 13/17

2.3.2 Commissioning Mode In order to join an existing ZigBee Green Power compliant network, devices need to be configured for the correct radio channel and subsequently issue a properly formatted Join request outlining its device and security parameters. The combination of these tasks is referred to as commissioning. 2.3.2.1 Radio Channel Selection devices support up to four pre-configured, dynamically selectable radio channels. In the current implementation, radio channels 11, 15, 20 and 25 according to the IEEE 802.15.4 standard are supported. The proper radio channel is selected by pressing one of the four contact nipples together with the energy bow and holding it for a period longer than 7 seconds. If such long press is detected then will set the radio channel according to the button pressed. In the current implementation, the correspondence between contact nipple pressed and radio channel selected is as follows: - B0: Channel 11 - A0: Channel 15 - A1: Channel 20 - B1: Channel 25 will issue a Join telegram on the selected radio channel as soon as the energy bow is released. 2.3.2.2 Join Request Whenever a radio channel is selected in accordance to 2.3.2.1, devices will issue a Join request. This Join request will be sent as broadcast (destination ID 0xFFFF) on the selected channel. The Join request will identify the device as ZigBee on / off switch (device ID 0x02) and contain the unique ZGPD SrcId as well as the unique device security key encoded with the ZigBee Trust Center Link Key. User Manual v1.4 July 2013 Page 14/17

2.4 Construction of application specific Switch Rockers For CAD system development support, 3D construction data is available from EnOcean (IGS data). Using this data, the mechanical interface is fixed, and the shape and surface of the rocker(s) can be changed according to requirements. Polycarbonate is recommended as rocker material since it is both buckling resistant and wear-proof. It is also recommended to apply Teflon varnish in the areas of actuation. It is recommended using non-conductive material for the rockers to ensure best transmission range. Avoid if possible metallic materials or plastics with conducting ingredients such as graphite. 2.5 Device Mounting For mounting the PTM 21x device into an application specific case, the package outline drawings of the device are given in chapter 1.4. More detailed 3D construction data is available from EnOcean in IGS format. It is recommended not to mount the device directly onto metal surfaces or into metal frames since this can lead to significant loss of transmission range. User Manual v1.4 July 2013 Page 15/17

2.6 Regulatory Notes has been certified according to applicable regulations. Changes or modifications not expressly approved by EnOcean could void the user's authority to operate the equipment. 2.6.1 FCC (United States) Regulatory Statement This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. 2.6.2 IC (Industry Canada) Regulatory Statement This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. User Manual v1.4 July 2013 Page 16/17

3 Transmission Range The main factors that influence the system transmission range are: - Type and location of the antennas of receiver and transmitter - Type of terrain and degree of obstruction of the link path - Sources of interference affecting the receiver - Dead spots caused by signal reflections from nearby conductive objects. Since the expected transmission range strongly depends on this system conditions, range tests should always be performed to determine the reliably achievable range under the given conditions. The following figures should be treated as a rough guide only: - Line-of-sight connections Typically 20 m range in corridors, up to 75 m in halls - Plasterboard walls / dry wood Typically 20 m range, through max. 3 walls - Ferro concrete walls / ceilings Typically 7 m range, through max. 1 ceiling - Fire-safety walls, elevator shafts, staircases and similar areas should be considered as shielded The angle at which the transmitted signal hits the wall is very important. The effective wall thickness and with it the signal attenuation varies according to this angle. Signals should be transmitted as directly as possible through the wall. Wall niches should be avoided. Other factors restricting transmission range include: - Switch mounting on metal surfaces (up to 30% loss of transmission range) - Hollow lightweight walls filled with insulating wool on metal foil - False ceilings with panels of metal or carbon fibre - Lead glass or glass with metal coating, steel furniture The distance between the receiver and other transmitting devices such as computers, audio and video equipment that also emit high-frequency signals should be at least 0.5 m. User Manual v1.4 July 2013 Page 17/17