Power margin improvement for OFDMA-PON using hierarchical modulation

Similar documents
A WDM passive optical network enabling multicasting with color-free ONUs

Flexible and Concurrent All-Optical VPN in OFDMA PON

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Optical Fiber Technology

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Novel OBI noise reduction technique by using similar-obi estimation in optical multiple access uplink

Mahendra Kumar1 Navneet Agrawal2

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Novel Design of Long Reach WDM-PON by using Directly Modulated RSOA

Evolution from TDM-PONs to Next-Generation PONs

Proposal of A Star-16QAM System Based on Intersymbol Interference (ISI) Suppression and Coherent Detection

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

High-capacity and low-cost long-reach OFDMA PON based on distance-adaptive bandwidth allocation

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

Channel Equalization and Phase Noise Compensation Free DAPSK-OFDM Transmission for Coherent PON System

Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format

Pilot-based blind phase estimation for coherent optical OFDM system

Demonstration of Software Reconfigurable Real-Time FEC-Enabled 4/16/64-QAM-OFDM Signal Transmission in an X-Band RoF System

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

1.25-Gb/s Millimeter-Wave Band Wired/Wireless Radio-over-Fiber System based on RSOA using an Injection-Locked FP-Laser

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM

Wavelength Division Multiplexing Passive Optical Network (WDM-PON) technologies for future access networks

60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth

A Full-duplex OSSB Modulated ROF System with Centralized Light Source by Optical Sideband Reuse

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Optical signal suppression by a cascaded SOA/RSOA for wavelength reusing reflective PON upstream transmission

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong

Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Study of Orthogonal Modulation Schemes for Passive. Optical Access Networks.

Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation

Passive Optical Network Supporting Seamless Integration of RoF and OFDMA Signals

Optical Fiber Technology. Using 10 Gb/s remodulation DPSK signal in self-restored colorless WDM-PON system

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

OCIS codes: ( ) Fiber optics and optical communications; ( ) Fiber optics components; ( ) Modulation.

A SURVEY ON CHALLENGES IN WDM-PON SYSTEMS

COHERENT DETECTION OPTICAL OFDM SYSTEM

Performance Analysis of Long Reach Coherent m-qam OFDM PON Downstream Transmission

Architecture and Applications of a Versatile Small- Cell, Multi-Service Cloud Radio Access Network Using Radio-over-Fiber Technologies

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Phase Noise Compensation for Coherent Orthogonal Frequency Division Multiplexing in Optical Fiber Communications Systems

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

80 GBPS DOWNSTREAM TRANSMISSION USING DQPSK AND 40 GBPS UPSTREAM TRANSMISSION USING IRZ/OOK MODULATION IN BIDIRECTIONAL WDM-PON

A High-Speed Bi-Directional Visible Light Communication System Based on RGB-LED

A WDM-PON-Compatible System for Simultaneous Distribution of Gigabit Baseband and Wireless Ultrawideband Services with Flexible Bandwidth Allocation

Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems

Performance analysis of direct detection and coherent detection system for optical OFDM using QAM and DPSK

A 10-Gbps optical WiMAX transport system

Technologies for future mobile transport networks

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 16, AUGUST 15, /$ IEEE

System Impairments Mitigation for NGPON2 via OFDM

Wavelength-Enhanced Passive Optical Networks with Extended Reach

Next-Generation Optical Fiber Network Communication

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Radio over Fiber Technology for Investigation of Hybrid Passive Optical Networks

Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK

Sensors & Transducers Published by IFSA Publishing, S. L.,

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Blind symbol synchronization for direct detection optical OFDM using a reduced number of virtual subcarriers

Intra-Cavity Chromatic Dispersion Impacts on 10-Gb/s Optical OFDM Transmissions Over 25-km Dual-RSOA-Based Self-Seeded PON Systems

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Multi-format receiver for non-return-to-zero binary-phase-shift-keyed and non-return-to-zero amplitude-shit-keyed signals

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Single photodiode direct detection system of 100- Gb/s OFDM/OQAM-64QAM over 80-km SSMF within a 50-GHz optical grid

A Long Haul Carrier Generated Ultra Dense Passive Optical Network Incorporating Low Cost VCSEL

Provision of IR-UWB wireless and baseband wired services over a WDM-PON

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Wavelength Interleaving Based Dispersion Tolerant RoF System with Double Sideband Carrier Suppression

Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

Performance evaluation for optical backhaul and wireless front-end in hybrid optical-wireless access network

Fiber-wireless links supporting high-capacity W-band channels

DESIGN OF BIDIRECTIONAL PASSIVE OPTICAL NETWORK USING DIFFERENT MODULATIONS

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

Emerging Subsea Networks

Effects of Polarization Tracker on 80 and 112 Gb/s PDM-DQPSK with Spectral Amplitude Code Labels

Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA

Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication

Dr. Monir Hossen ECE, KUET

Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

SQNR Improvement Enabled by Nonuniform DAC Output Levels for IM-DD OFDM Systems

Investigation of a novel structure for 6PolSK-QPSK modulation

FULL COLORLESS GIGABIT WAVELENGTH-DIVISION MULTIPLEXED- PASSIVE OPTICAL NETWORK SUPPORTING SIMULTANEOUS TWO DIFFERENT DATA TRANSMISSION

Emerging Subsea Networks

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

Real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT

TDM-PON with 30 Gb/s D8PSK downstream and 10 Gb/s OOK upstream based on a digital incoherent receiver Sotiropoulos, N.; Koonen, A.M.J.; de Waardt, H.

Performance Analysis of 112 Gb/s PDM- DQPSK Optical System with Frequency Swept Coherent Detected Spectral Amplitude Labels

Emerging Subsea Networks

Transcription:

Power margin improvement for OFDMA-PON using hierarchical modulation Pan Cao, 1 Xiaofeng Hu, 1 Zhiming Zhuang, 1 Liang Zhang, 1 Qingjiang Chang, 2 Qi Yang, 3 Rong Hu, 3 and Yikai Su 1,* 1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China 2 Research & Innovation Center, Alcatel-Lucent Shanghai Bell Co., Ltd, Shanghai, 201206, China 3 State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts & Telecommunications, Wuhan, 430074, China * yikaisu@sjtu.edu.cn Abstract: We propose and experimentally demonstrate a hierarchical modulation scheme to improve power margin for orthogonal frequency division multiple access-passive optical networks (OFDMA-PONs). In a PON system, under the same launched optical power, optical network units (ONUs) have different power margins due to unequal distribution fiber lengths. The power margin of the PON system is determined by the ONU with the lowest power margin. In our proposed scheme, ONUs with long and short distribution fibers are grouped together, and downstream signals for the paired ONUs are mapped onto the same OFDM subcarriers using hierarchical modulation. In a pair of ONUs, part of the power margin of the ONU with short distribution fiber is re-allocated to the ONU with long distribution fiber. Therefore, the power margin of the ONU with the longest distribution fiber can be increased, leading to the power margin improvement of the PON system. Experimental results show that the hierarchical modulation scheme improves the power margin by 2.7 db for an OFDMA-PON system, which can be used to support more users or extend transmission distance. 2013 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (060.4250) Networks. References and links 1. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network, J. Lightwave Technol. 22(11), 2582 2591 (2004). 2. C. H. Lee, W. V. Sorin, and B. Y. Kim, Fiber to the home using a PON infrastructure, J. Lightwave Technol. 24(12), 4568 4583 (2006). 3. P. P. Iannone and K. C. Reichmann, Optical access beyond 10 Gb/s PON, in Proc. ECOC 2010, paper Tu.3.B.1. 4. D. Qian, N. Cvijetic, J. Hu, and T. Wang, 108 Gb/s OFDMA-PON with polarization multiplexing and direct detection, J. Lightwave Technol. 28(4), 484 493 (2010). 5. N. Cvijetic, OFDM for next-generation optical access networks, J. Lightwave Technol. 30(4), 384 398 (2012). 6. J. Tang, First experimental demonstration of real-time optical OFDMA PONs with colorless ONUs and adaptive DBA, in Proc. OFC 2012, paper OW4B. 7. ITU-T G. 987.1, Series G: Transmission systems and media, digital systems and networks. Digital sections and digital line system - Optical line systems for local and access networks. (2010). 8. H. K. Lee, J. H. Moon, S. G. Mun, K. M. Choi, and C. H. Lee, Decision threshold control method for the optical receiver of a WDM-PON, J. Opt. Commun. Netw. 2(6), 381 388 (2010). 9. F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, Next-generation PON Part II: candidate systems for next-generation PON, IEEE Commun. Mag. 47(11), 50 57 (2009). 10. H. Jiang and P. A. Wilford, A hierarchical modulation for upgrading digital broadcast systems, IEEE Trans. Broadcast 51(2), 223 229 (2005). 11. D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation, IEEE Trans. Broadcast 55(1), 42 50 (2009). 12. C. Hausl and J. Hagenauer, Relay communication with hierarchical modulation, IEEE Commun. Lett. 11(1), 64 66 (2007). (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8261

13. H. Jiang, P. A. Wilford, and S. A. Wilkus, Providing local content in a hybrid single frequency network using hierarchical modulation, IEEE Trans. Broadcast 56(4), 532 540 (2010). 14. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture, in Proc. ECOC 2007, paper 5.4.1. 15. A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5- Gb/s OCS-SCM upstream signal, IEEE Photon. Technol. Lett. 20(24), 2081 2083 (2008). 16. X. Zheng, J. L. Wei, and J. M. Tang, Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks, Opt. Express 16(25), 20427 20440 (2008). 17. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers, Opt. Express 17(22), 20484 20493 (2009). 18. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems, Opt. Express 18(6), 5541 5555 (2010). 19. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM, J. Lightwave Technol. 26(1), 196 203 (2008). 20. Z. Xu, Y. K. Yeo, X. Cheng, and E. Kurniawan, 20-Gb/s injection locked FP-LD in a wavelength-divisionmultiplexing OFDM-PON, in Proc. OFC 2012, paper OW4B.3. 21. J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals, IEEE Photon. Technol. Lett. 20(18), 1545 1547 (2008). 22. X. Liu and F. Buchali, Improved nonlinear tolerance of 112-Gb/s PDM-OFDM in dispersion-uncompensated transmission with efficient channel estimation, in Proc. ECOC 2008, paper Mo.3.E.2. 1. Introduction Passive optical network (PON) is a promising solution to satisfy the exponentially growing demand of emerging high-bandwidth services [1 3]. Orthogonal frequency division multiple access-pon (OFDMA-PON) has been proposed as an attractive candidate for next-generation PON due to its high spectral efficiency, dynamic bandwidth allocation, and robust dispersion tolerance [4 6]. In the OFDMA-PON system, bandwidth allocation is controlled by optical line terminal (OLT) to meet the requirements of optical network units (ONUs). The OLT preassigns time/frequency slots to each ONU, and then at the ONU side, each ONU selects its own data from the pre-assigned slots. In next-generation PON systems, distribution fiber lengths from remote node (RN) to ONUs are between 0 and 40 km [7], which lead to different transmission losses of ONUs. Thus, under the same launched optical power, ONUs have different power margins. Here, the power margin is defined as the difference between the received optical power and the required optical power to obtain the requested bit error ratio (BER) performance. The ONU with the longest distribution fiber length has the lowest power margin, which is consider as the power margin of the PON system [8]. In this paper, we propose a hierarchical modulation scheme to improve the power margin for OFDMA-PON systems. Using hierarchical modulation, signals for ONUs with long and short distribution fibers are mapped onto the first and second layers of the OFDM subcarriers, respectively. By using this method, in a pair of ONUs, the power margins of the ONUs with long and short distribution fibers are improved and degraded, respectively. As a result, the power margin of the PON system is improved since the system performance is determined by the ONU with the lowest power margin. The uplink transmission usually operates at lower bit rate that leads to better receiver sensitivity [9], and therefore a higher power margin. Thus, we mainly focus on the downlink transmission. A proof-of-concept experiment is performed to verify the feasibility of our proposal. The experimental results show that the proposed scheme improves the power margin by 2.7 db for downlink transmission of the OFDMA-PON system, which can support more users or extend the transmission distance. (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8262

2. Operation principle Fig. 1. Principle of hierarchical QPSK / 16-QAM mapping. Hierarchical modulation, also termed as layered modulation, was proposed to provide unequal error protections for different signals in broadcast systems [10,11]. In the hierarchical modulation, several data sources are multiplexed into a symbol stream. Figure 1 shows the principle of a 16 quadrature amplitude modulation (16-QAM) hierarchical modulation with two layers. The hierarchical 16-QAM signal can be viewed as a combination of two quadrature phase shift keying (QPSK) signals. Data 1 and Data 2 denoted by solid squares and solid circles are defined as the first and second layers, respectively. d 1 and d 2 are the distances between adjacent points in the constellations of Data 1 and Data 2, respectively. Since the minimum distance between adjacent points in the constellation of Data 1 is larger than that of Data 2, Data 1 can achieve better BER performance than that of Data 2 in the same system [12,13]. Here, we define a hierarchical parameter α (α = d 1 / d 2 ), which can be used to adjust the performance difference between the two layers. With the increase of α, the performance difference between the two layers becomes large. Fig. 2. Schematic diagrams of resource allocations and power margins of the OFDMA-PON system using conventional 16-QAM mapping (a, b) and proposed hierarchical 16-QAM mapping (c, d). (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8263

Figure 2 illustrates the principle of the power margin improvement based on the hierarchical modulation, where ONU 1 and ONU 2 have long and short distribution fibers, respectively. To simplify the analysis, we assume that the two ONUs require the same number of subcarriers and all the subcarriers use 16-QAM format. In Fig. 2(a), signals for the two ONUs are mapped onto OFDM subcarriers with conventional 16-QAM mapping. If the received optical power of ONU 1 (P 1 ) is the same as the receiver sensitivity of the conventional 16-QAM mapping (P C-16QAM ), ONU 1 has zero power margin. Due to different link losses, the received optical power of ONU 2 is P 2, and ONU 2 has a power margin of P 2 P C-16QAM, as illustrated in Fig. 2(b). In the proposed scheme, by using hierarchical modulation, data for ONU 1 and ONU 2 are mapped onto the first and second layers, respectively, as shown in Fig. 2(c). The two ONUs have the same bit rate as ONUs with the conventional 16-QAM mapping in Fig. 2(a), since the numbers of subcarriers and spectral efficiencies of the two ONUs are doubled and halved, respectively. The signal on the first layer has better transmission performance than that of the signal on the second layer [12,13]. As illustrated in Fig. 2(d), the receiver sensitivities of signals on the first layer (P Layer-1 ) and the second layer (P Layer-2 ) are improved and degraded, respectively. Thus, an inequality P Layer-1 < P 1 (P C-16QAM ) < P Layer-2 can be obtained. If the received optical powers of the ONUs satisfy the inequalities P Layer-1 P 1 and P Layer-2 P 2, the hierarchical modulation can be utilized to balance the transmission performances between the two ONUs, which means that part of the power margin of ONU 2 can be re-allocated to ONU 1. Then the power margins of ONU 1 and ONU 2 become P 1 P Layer-1 and P 2 P Layer-2, respectively. Therefore, the power margin of the PON system is improved by P M = min (P 1 P Layer-1, P 2 P Layer-2 ). In order to achieve high power margin for the PON system, the two ONUs should have nearly the same power margin (P 1 P Layer-1 P 2 P Layer-2 ), which can be obtained by choosing a proper hierarchical parameter α. Tx OLT Downstream ONU i Downstream Rx i Group 1 CWDM CWDM ONU 1 Rx Upstream (i) Upstream (ii) Tx i (λ i ) ONU 2 RN OLT Feeder Fiber Splitter Group n/2 ONU n-1 ONU n Fig. 3. Schematic diagram of the proposed OFDMA-PON using hierarchical modulation. Figure 3 shows the schematic diagram of the proposed OFDMA-PON architecture using hierarchical modulation, where the distribution fibers have different transmission lengths. The ONUs are divided into several groups according to their distribution fiber lengths: two ONUs with the longest and the shortest distribution fiber lengths are paired together as Group 1, two ONUs with the second longest and the second shortest distribution fiber lengths are grouped as Group 2, and the rest ONUs are paired by the same method. At the ONU sides, the uplink signals are carried by different wavelengths from the downlink transmission [14], where the Rayleigh noise is effectively mitigated [15], as shown in the insets of Fig. 3. (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8264

3. Experimental setup and results Fig. 4. Experimental setup of the proposed OFDMA-PON system based on hierarchical modulation. Figure 4 shows the experimental setup of the proposed scheme, where intensity modulation/direct detection (IM/DD) is employed to realize a simple and low-cost configuration [16 18]. In the experiment, the OFDM signal is generated offline by MATLAB. A frequency guard band equal to the data bandwidth is employed to separate the OFDM signal from the optical carries [19]. In order to obtain IM/DD OFDM signal, Hermitian symmetry is applied before the IFFT. Then the OFDM signal is output by an arbitrary waveform generator (Tektronix 7122C) with 5-GSample/s sampling rate and 10-bit resolution of digital-to-analog conversion (DAC). Therefore, the raw bit rate of the OFDM signal is 5 Gb/s. We experimentally demonstrate two ONUs: ONU 1 with 30-km distribution fiber and ONU 2 with 1-km distribution fiber. Using hierarchical modulation, the signals for ONU 1 and ONU 2 are paired together and mapped onto the first and second layers of the OFDM subcarriers, respectively. Based on the analysis in section 2, the power margin of the system can be improved with a proper choice of α, since part of the power margin of ONU 2 is reallocated to ONU 1. A continuous-wave light from a tunable distributed feedback (DFB) laser at 1550 nm is fed into a single-drive Mach-Zehnder modulator (MZM), which is biased at the quadrature point and modulated by the OFDM signal. The output signal of the MZM is amplified by an erbium doped fiber amplifier (EDFA). A following tunable optical filter (TOF) is used to suppress the amplified spontaneous emission (ASE) noise. The launched optical power of the downstream signal is set to 8 dbm to meet the sensitivity requirements of the used photodetectors (PDs). (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8265

Fig. 5. Recovered constellations and sensitivity differences between the two layers with different hierarchical parameter α. After transmission over 50-km standard single mode fiber (SSMF) [20], at the RN, a 9-dB attenuator is used to emulate a 1:8 optical splitter. It is noted that higher splitting ratio can be obtained if high-sensitivity receivers are employed at the ONU sides [21]. The downstream data is then routed to each ONU, where the OFDM signal is directly detected by a PD. The output signal of the PD is sampled by a real-time oscilloscope (Tektronix DSA70804) with 25-GS/s sampling rate. The sampled data are processed offline using MATLAB, and the recovered constellations are shown in the insets of Fig. 5. The information bits on the first and second layers are determined by the quadrants and the sub-quadrants where the symbol vectors are located, as depicted in Fig. 1. By using hierarchical modulation, the two layers require different received optical powers to achieve a BER of 10 3 [22]. As shown in Fig. 5, the sensitivity differences between the two layers are 0.9 db, 5.6 db, and 10.1 db when α is 2, 3, and 4, respectively. In the experiment, the distribution fiber lengths are 1 km and 30 km, resulting in 5.8-dB received optical power difference between the two ONUs. In order to effectively balance the power margins for the paired ONUs, we chose the hierarchical parameter α = 3 to improve and degrade the signal performances on the first and second layers, respectively. It should be noted that the hierarchical parameter α can maintain the same if the power difference keeps the same in different scenarios. (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8266

Fig. 6. Power margins and BER performances of conventional 16-QAM mapping and hierarchical 16-QAM mapping with α = 3. After fiber transmission, the requested optical power to obtain a BER of 10 3 is 21.0 dbm using conventional 16-QAM mapping, as shown in Fig. 6(a). The received optical powers of ONU 1 and ONU 2 are 21.0 dbm and 15.2 dbm, respectively, leading to 0-dB and 5.8-dB power margins for the two ONUs. Thus the PON system has zero power margin determined by ONU 1. As illustrated in Figs. 6(b) and 6(c), when the hierarchical parameter α is 3, the receiver sensitivity of ONU 1 is improved to 23.7 dbm (P Layer-1 ), while that of ONU 2 is degraded to 18.1 dbm (P Layer-2 ). Since the received optical powers are 21.0 dbm for ONU 1 and 15.2 dbm for ONU 2, the power margins of ONU 1 and ONU 2 are 2.7 db and 2.9 db, respectively. Therefore, the power margin for the PON system is improved by 2.7 db. Figure 6(c) shows the BER performances of the signals with the conventional 16-QAM mapping and the two layers of the hierarchical 16-QAM mapping in the case of α = 3. In addition, if the difference of the distribution fiber lengths increases, a larger hierarchical parameter α should be chosen to balance the power margins between the paired ONUs and further improve the power margin for the OFDMA-PON system. (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8267

4. Conclusion We have proposed and experimentally demonstrated a new method to improve power margin for OFDMA-PON system using hierarchical modulation. In the experiment, signals for ONUs with 1-km and 30-km distribution fiber lengths are paired together and mapped onto the two layers of the OFDM subcarriers. Part of the power margin of the ONU with 1-km distribution fiber length is transferred to the ONU with 30-km distribution fiber length. Thus the power margin of the ONU with 30-km distribution fiber is improved, leading to the power margin improvement for the OFDMA-PON system. Compared with the conventional 16-QAM modulation, the proposed hierarchical modulation improves the power margin of the system by 2.7 db, which can be used to support more subscribers or extend transmission distance. Acknowledgments This work was supported in part by the 863 program (SS2013AA010502), NSFC (61077052/61125504/61225504), MoE (20110073110012), and Science and Technology Commission of Shanghai Municipality (11530700400). (C) 2013 OSA 8 April 2013 Vol. 21, No. 7 DOI:10.1364/OE.21.008261 OPTICS EXPRESS 8268