Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG

Similar documents
Kent Academic Repository

Characterization of a fibre optic swept laser source at 1!m for optical coherence tomography imaging systems

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Swept Wavelength Testing:

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation

A new picosecond Laser pulse generation method.

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Frequency comb swept lasers

High-Coherence Wavelength Swept Light Source

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

MICROWAVE photonics is an interdisciplinary area

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Frequency comb swept lasers for optical coherence tomography

Frequency comb swept lasers

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Cheng, KHY; Standish, BA; Yang, VXD; Cheung, KKY; Gu, X; Lam, EY; Wong, KKY

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

NIH Public Access Author Manuscript Meas Sci Technol. Author manuscript; available in PMC 2014 June 01.

Axsun OCT Swept Laser and System

Precise control of broadband frequency chirps using optoelectronic feedback

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Doppler-Free Spetroscopy of Rubidium

Chapter 1 Introduction

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

R. J. Jones Optical Sciences OPTI 511L Fall 2017

All-fiber, short-cavity-length wavelength swept laser based on Fabry-Perot filter

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

Optical coherence tomography

S.R.Taplin, A. Gh.Podoleanu, D.J.Webb, D.A.Jackson AB STRACT. Keywords: fibre optic sensors, white light, channeled spectra, ccd, signal processing.

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

Elements of Optical Networking

60 MHz A-line rate ultra-high speed Fourier-domain optical coherence tomography

taccor Optional features Overview Turn-key GHz femtosecond laser

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Supplementary Figures

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

University of Central Florida. Mohammad Umar Piracha University of Central Florida. Doctoral Dissertation (Open Access)

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Laser Sources for Frequency-Domain Optical Coherence Tomography FD-OCT

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications

All-Optical Signal Processing and Optical Regeneration

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

56:/)'2 :+9: 3+'9;8+3+4:

DWDM FILTERS; DESIGN AND IMPLEMENTATION

Holography Transmitter Design Bill Shillue 2000-Oct-03

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Laser Diode. Photonic Network By Dr. M H Zaidi

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Vertical External Cavity Surface Emitting Laser

Analogical chromatic dispersion compensation

A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Temperature-Independent Torsion Sensor Based on Figure-of-Eight Fiber Loop Mirror

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Chapter 1. Overview. 1.1 Introduction

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Fast Widely-Tunable CW Single Frequency 2-micron Laser

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

Single-longitudinal mode laser structure based on a very narrow filtering technique

A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

HYPERSPECTRAL LASERS FOR SPECTROSCOPIC MEASUREMENTS IN THE NEAR-INFRARED

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources

DIAMOND-SHAPED SEMICONDUCTOR RING LASERS FOR ANALOG TO DIGITAL PHOTONIC CONVERTERS

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Designing for Femtosecond Pulses

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

A WDM passive optical network enabling multicasting with color-free ONUs

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Opto-VLSI-based reconfigurable photonic RF filter

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Transcription:

PHOTONIC SENSORS / Vol. 5, No. 3, 215: 251 256 Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG Radu-Florin STANCU * and Adrian PODOLEANU Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK * Corresponding author: Radu-Florin STANCU E-mail: rs478@kent.ac.uk Abstract: An optical akinetic swept source (AKSS) at 16 nm, comprising a 5 m length fiber ring cavity, a semiconductor optical amplifier (SOA) as gain medium, and a 98% reflective chirped fiber Bragg grating as a dispersive element, is described. Active mode-locking was achieved by directly modulating the current of the SOA with sinusoidal signal of frequency equal to 1 times and 2 times the cavity resonance frequency. In the static regime, linewidths as narrow as 6 pm and a tuning bandwidth of 3 nm were achieved, while a 2 mw output power, without any optical booster, was measured dynamically at a sweep speed of 1 khz. The axial range of the AKSS was evaluated by scanning through the channeled spectrum of a Mach-Zehnder interferometer. Keywords: Semiconductor optical amplifier, laser mode locking, ring laser, dispersive element Citation: Radu-Florin STANCU and Adrian PODOLEANU, Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG, Photonic Sensors, 215, 5(3): 251 256. 1. Introduction Swept source optical coherence tomography (SS-OCT) represents a modern, noninvasive technique of tissue biomedical imaging that uses fast swept narrow linewidth lasers within a sufficiently wide tuning bandwidth [1]. OCT experiments are either performed in vivo, especially for retinal imaging, which requires an SS with a large axial range, or in vitro, for thin, microscopic tissue samples. The later applications do not necessarily need fast sweeping or narrow linewidth, but in turn could benefit from the use of more cost effective lasers, with enhanced versatility in terms of allowing control of the output optical parameters, such as the linewidth, pulse repetition rate or power. The most spread SSs employ Fabry-Perot filters [2], efficient in achieving linewidths narrower than.1 nm, but susceptible to electrical shock damage and high optical power generated in the cavity. Another mechanical solution used in tunable lasers is based on a rotating polygon mirror [3], but this determines a fixed scanning rate. SSs that use resonant micro-electro-mechanical system (MEMS) filters also exhibit a fixed tuning rate and a fixed axial range [4]. The Fourier domain mode-locking (FDML) method was proposed for a tunable Fabry-Perot based ring laser by extending its delay to values matching its round trip time, and several hundred khz sweep rates were achieved [5]. This method requires the use of kilometers of single mode optical fiber (SMF), which makes the total cavity length extremely long, and the application at non-telecom wavelengths is not cost effective. Other solutions employ shorter cavities equipped with external Received version: 18 March 215 / Revised version: 7 June 215 The Author(s) 215. This article is published with open access at Springerlink.com DOI: 1.17/s1332-15-252-1 Article type: Regular

252 Photonic Sensors modulators, such as acousto-optic deflectors [6]. The interest on the akinetic swept source concept (AKSS) has been raised by the demonstration of fast, wide tuning bandwidth and large coherence length tunable lasers based on vertical-cavity surface-emitting lasers (VCSEL) devices [7]. An AKSS concept using mode locking in an anomalous dispersive cavity employing dispersion compensating fiber (DCF) was recently introduced [8, 9]. In order to achieve wide and fast tuning with a narrow spectral linewidth, it was shown that the dispersion characteristic of DCF and the modulation frequency should be as large as possible, while the cavity length should be as small as possible. Also, it was demonstrated that by combining two lengths of fiber, one with anomalous dispersion, the DCF and the other with normal dispersion, such as SMF, and the coherence length could be adjusted slightly by the amount of dispersion in the cavity and the mode locking frequency of the signal applied to the semiconductor optical amplifier (SOA) that tunes the gain medium [1]. Although these concepts based on the dispersion tuning principle are versatile, the cavity lengths are still long, and their integration as optical sources in compact interferometer based systems like OCT could prove challenging. Therefore, the current trend in AKSS development is to achieve high performance in terms of optical output parameters and axial range by using a short cavity, with compact dispersive elements that can replace tenths or even hundreds of meters of DCF and SMF. Recent proposed solutions employ the use of a partially reflective chirped fiber Bragg grating (CFBG) as a dispersive element in linear cavities [11]. In this paper, a short ring cavity AKSS based on a highly reflective (R>98%) CFBG used as a dispersive element, is described. The mode locking was achieved totally electronically, by injecting a radio frequency (RF) modulated current directly into the SOA. A broadband tuning emission and sweeping rates over 1 khz were achieved. 2. Theory The dispersion tuning theoretical considerations [8 11] describe the static or dynamic operation of an AKSS that uses a dispersive ring cavity. The resonance frequency f R (also known as free spectral range), represents the spacing between adjacent modes in the cavity, and it is defined as c fr (1) nl where c represents the speed of light in vacuum, n denotes the index of refraction in the cavity, and L represents the total ring cavity length. The mode-locking frequency f m is defined as a multiple N of the resonance frequency, N f R. When the cavity employs a dispersive element, like the CFBG, the chromatic dispersion inside the cavity can be expressed as a function of wavelength λ [11]: nl fm (2) cd f total m where f m is the central mode-locking frequency, D total is the total dispersion in the cavity, n is the index of refraction for the central wavelength, and Δf m represents the change in the modulation frequency. The maximum tuning range is achieved, given by 1 max. (3) Dtotal f m The maximum achievable sweeping rate f s for a single short cavity roundtrip, is defined as [12] c fs,max (4) Ln where λ represents the linewidth. In order to achieve sufficient gain for lasing, the sweep rate f s must be smaller than the maximum value f s,max [12]. 3. Experimental setup and results The experimental setup is depicted in Fig. 1 using an SMF (Corning, Hi16, dispersion parameter 38 ps/nm km) ring cavity in which an SOA (QPhotonics-15), operating at a central wavelength of 16 nm, with a 3 db bandwidth of 1 nm, was used as the gain medium. This was

Radu-Florin STANCU et al.: Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG 253 driven by a Thorlabs LDC2 power supply, while temperature stability was ensured by a Thorlabs TED2. The SOA was isolated by two polarization insensitive fiber optic isolators (ISOs), which ensured unidirectional lasing. The cavity was closed via a 5:5 coupler and a CFBG (QPS Photronics, 36 nm bandwidth, central wavelength at 16 nm, dispersion parameter 11 ps/nm, reflectivity R>98%). The other output of the coupler delivered 5% of the power from the cavity. The total cavity length was minimized to 4.73 m. We initially employed a circulator to close the loop via the CFBG, but this was soon ruled out due to large polarization mode dispersion. In fact, the extra losses introduced by the coupler allowed utilization of larger current through the SOA for similar amplified spontaneous emission (ASE) contribution, which determined a wider SOA bandwidth. To drive the laser into mode locking, a sinusoidal RF signal was applied to the SOA from one generator of a dual radio frequency signal generator (RFSG) HP8648C, 9 khz 3.2 GHz that could deliver up to 2.5 V pp maximum output). This was employed for static tuning operation, by manually changing the input signal frequency. For the dynamic regime, the signal from a voltage controlled oscillator (VCO) was applied to the SOA, where the VCO was driven by a ramp signal generated, RG (in fact the other half of the same Agilent RFSG, model 8116A). The offset of the ramp signal determines the central mode-locking frequency generated by the VCO, while its amplitude sets the frequency tuning range Δf of the VCO. The repetition frequency of the RFSG ramp determines the tuning rate, f s. Two VCOs were tested, to generate mode-locking at 1f R and 2f R, respectively: ZX95-368S+ and ZX95-928CA+. Ramps were applied to the VCO from a ramp generator (RG). The signal either from the RFSG or from the VCO was further amplified by a radio frequency amplifier (RFA), before being delivered to the SOA via a bias T. The amplifier RFA was made from a cascade of two mini-circuits RF amplifiers, a ZFL-25VH+, 2.5 GHz, 26 dbm and a ZHL-42W, 4.2 GHz, 28 dbm). The laser output characteristics of the AKSS configuration were measured with an Agilent 86145B optical spectrum analyzer (OSA). The dynamic sweeping was evaluated by probing the channeled spectrum of a Mach-Zehnder interferometer driven by the SS. The photo detected signal output was measured using a balanced photo-detector (Newport 1617) and displayed with a LeCroy Wave Runner 14 MXi-A 1 GHz oscilloscope. It was noted that ramps driving the optical frequency from high to low lead to a larger tuning bandwidth and a better signal to noise ratio than ramps driving the optical frequency from low to high. Fig. 1 AKSS setup, with two mode-locking RF circuits for (a) static regime operation and (b) dynamic regime operation. When operating the AKSS in the static regime, the range of mode-locking frequency f m values was identified, within this range the laser was tuned within a bandwidth Δλ=3 nm, measured by the OSA. This denotes a static frequency band Δf centered at each frequency f m, multiple of f R. The larger f m is, the larger the span Δf is, necessary to obtain the optical bandwidth Δλ, according to the graph in Fig. 2. The linewidth was also measured in the static regime, a value of 6 pm being obtained at 1 GHz mode locking. The practical linewidth values are assumed to be better than the measured values, 6 pm, due to the limited resolution of the OSA. Pulses at the mode-locking frequency f R = 43.27 MHz were measured using the photodetector.

254 Photonic Sensors Applying (2) and (3) leads to a theoretical output bandwidth larger than that achievable and measured by the OSA. In practice, the tuning bandwidth is limited by the CFBG bandwidth (32 nm with the reflectivity R > 98% around the central wavelength = 16 nm emission wavelength, according to the manufacturer). Figure 3 displays the optical spectrum of the source for different sweeping speeds, from low frequency rates up to 5 khz. As the sweeping rate increases, the OSA measured output power (in dbm) and bandwidth (in nm) both decrease. The power versus sweep rate exhibits decay with a slope of.36 dbm/khz. At a 1 ma current driving the SOA, the power measured at the output was approximately 2 mw at 1 khz sweep rate. Above this level, the ASE becomes noticeable. The ripples observed in the optical output measured by the OSA occur due to the modulation characteristics of SOA [12]. Intensity (dbm) 1 1 2 3 4 5 6 14 15 16 17 Wavelength (nm) 1 khz 5 khz 1 khz 25 khz 5 khz 18 19 Fig. 3 AKSS optical output spectrum for different sweeping rates applied by the RG. Next, we evaluated the tuning capabilities versus the sweeping rate. The AKSS was mode locked at 1f R (corresponding to 432.7 MHz) and swept at the rate of 1 khz, 1 khz, 25 khz, 5 khz, and 1 khz. The resulting fringe amplitude at the output of a Mach-Zehnder interferometer with OPD = 1 mm was measured. 1. 8 35 2.6 Linewidth (nm).8.6.4.2 Span Linewidth. 2 4 6 8 1 Mode-locking frequency f m (MHz) Fig. 2 Static regime measurements: linewidth and frequency band Δf measured in the f m = 1 GHz mode-locking frequency interval. For mode-locking at f m = 1f R = 432.7 MHz, Fig. 4 illustrates the optical tuning bandwidth versus the RF tuning bandwidth Δf when operating the AKSS dynamically, at 1 khz sweep rate, using the RSFG. The RF tuning bandwidth was determined from the RSFG. A slight decrease in the output power was also registered, about 1% for tripling the tuning bandwidth. For a = 3 nm tuning bandwidth, assuming a Gaussian shape of the spectrum, the axial resolution achievable was.44 λ 2 /Δλ =.16 mm. 6 4 2 Span f (MHz) Bandwidth (nm) 3 25 2 15 1.2.4 Power.6 Bandwidth.8 1. 1.2 1.4 1.6 1.8 Span f (MHz) 2.5 2.4 2.3 2.2 2. Fig. 4 Optical power and tuning bandwidth measured dynamically for a 2 MHz frequency range for f m = 1f R = 432.7 MHz and at a sweep rate of 1 khz. Figure 5 depicts the photo-detected signal at the interferometer output for a 1 khz sweep rate, when applying a 1.2 V pp amplitude triangular signal from the RG to the VCO. The larger the amplitude is, the larger the RF frequency deviation is, and smaller the optical frequency is. When the RG signal drives the optical frequency from high to low amplitude, the resulting fringes have 17% larger amplitude than the ones measured when driving the SOA frequency from high to low. Power (mw)

Radu-Florin STANCU et al.: Short Ring Cavity Swept Source Based on a Highly Reflective Chirped FBG 255 Amplitude (db) 1 2 3 4 5 1 khz 1 khz 25 khz 5 khz 1 khz 6 7..5 1. 1.5 2. 2.5 OPD (mm) (a) f m = 432.7 MHz 3. 3.5 4. Fig. 5 Triangular VCO driving signal (top) and the resulting photodetected signal at the interferometer output measured at f m =1f R, f s =1 khz and OPD = 1 mm (bottom). A fast Fourier transformation (FFT) of the photodetected signal delivers a reflectivity profile, i.e. an A-scan [13] if used in OCT applications. The decay of the A-scan peaks with an increase in the OPD in the interferometer signal is depicted in Fig. 6. The faster the sweeping rate becomes, the steeper the decay does. The OPD values where the decay registered 12 db, were.64 mm,.39 mm,.3 mm,.24 mm, and.13 mm at 1 khz, 1 khz, 25 khz, 5 khz, and 1 khz, respectively. The A-scans show a decrease in the axial range, as the sweeping rate increases, this being attributed to the fact that the AKSS coherence length decreases with an increase in the sweeping speed [14]. At 1f R, we measured a value of λ =.182 nm for the instantaneous linewidth in Fig. 2. The linewidth λ defines a coherence length l c according to 2 2 2ln2 l c.44. (5) At f m = 1f R mode locking, the static coherence length l c was 2.71 mm. At 2f R, as the mode-locking frequency increased, the static linewidth narrowed to =.14 nm, as predicted by the measurements done in the static regime (Fig. 2). With this value, the static coherence length increased to 4.75 mm. Amplitude (db) 1 2 3 4 5 6 7..5 1. 1.5 2. 2.5 OPD (mm) (b) f m = 865.4 MHz 3. 1 khz 1 khz 25 khz 5 khz 1 khz 3.5 4. Fig. 6 Decay of modulation intensity with increasing OPD, for several sweeping rates of the signal delivered by the RG between 1 khz and 1 khz, (a) f m = 1f R (432.7 MHz) and (b) f m = 1f R (865.4 MHz). This means an improved axial scanning range that is confirmed by comparing the A-scan decay measurements performed at 1f R. On the other hand, if we take into consideration (4), as the linewidth becomes narrower and assuming the bandwidth and cavity length remain constant, the maximum sweeping rate that can be achieved decreases as well. In our case, by applying (4), we obtained the maximum theoretical sweeping rate f s,max of 264.54 khz at 1f R and 15.59 khz at 2f R. Thus, in order to achieve a better axial range at hundreds of khz repetition rate, when mode-locking at high frequencies, from (4) a shorter cavity length L would be required for further improvement, as explained in [14]. However, in the dynamic regime, as depicted in Fig. 6 for 1 khz, 1 khz and 25 khz, 5 khz, and 1 khz, the dynamic (instantaneous) linewidth during tuning, λ d, is much larger than the static

256 Photonic Sensors linewidth, λ. This results in a decay of the axial range with the sweep rate. 4. Conclusions A short ring cavity AKSS was demonstrated, with controllable mode locking and optical output parameters, coherence length, and repetition rate. It was shown that using a CFBG as a dispersive element significantly shortened the ring cavity length that was required in previous DCF based AKSS concepts [8 1], while maintaining good optical output parameters. Power and bandwidth show a very slow decay with an increase in the repetition rate up to 25 khz. The sweeping speed achieved could go up to 5 khz, but at this level, there was not sufficient gain for lasing, and the decay in power is more significant. Without any booster, the power achieved was 2 mw at 1 khz. These parameters could be improved by further reducing the cavity length and by using a larger bandwidth CFBG. We believe that there is also a reserve in the RF injection. By further strengthening the RF driving signal, while lowering the bias, the ASE may be further reduced. Acknowledgment The authors acknowledge the support of the European Research Council (ERC) (http://erc. europa.eu) COGATIMABIO 249889. A. Podoleanu is also supported by the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [1] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics Letters, 1997, 22(5): 34 342. [2] I. Trifanov, A. Bradu, L. Neagu, P. Guerreiro, A. B. L. Ribeiro, and A. G. Podoleanu, Experimental method to find the optimum excitation waveform to quench mechanical resonances of Fabry-Pérot tunable filters used in swept sources, IEEE Photonics Technology Letters, 211, 23(12): 825 827. [3] S. W. Lee, H. W. Song, M. Y. Jung, and S. H. Kim, Wide tuning range wavelength-swept laser with a single SOA at 12 nm for ultrahigh resolution Fourier-domain optical coherence tomography, Optics Express, 211, 19(22): 21227 21237. [4] J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter, IEEE Journal of Quantum Electronics, 21, 46(9): 1313 1319. [5] R. H. Huber, M. Wojtkovski, and J. G. Fujimoto, Fourier domain mode locking (FDML), Optics Express, 26, 14(8): 3225 3237. [6] T. Huo, J. Zhang, J. Zheng, T. Chen, C. Wang, N. Zhang, et al., Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography, Optics Letters, 214, 39(2): 247 25. [7] T. H. Tsai, O. O. Ahsen, H. C Lee, K. Liang, M. G. Giacomelli, B. Potsaid, et al., Endoscopic microscopy IX; and optical techniques in pulmonary medicine, in Proc. SPIE, vol. 8927, pp. 7 78, 214. [8] S. Yamashita and M. Asano, Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning, Optics Express, 26, 14(2): 9399 936. [9] Y. Takubo and S. Yamashita, In-vivo OCT imaging using wavelength swept fiber laser based on dispersion tuning, Photonics Technology Letters, 212, 24(12): 979 981. [1] R. F. Stancu, D. A. Jackson, and A. G. Podoleanu, Versatile swept source with adjustable coherence length, IEEE Photonics Technology Letters, 214, 26(16): 1629 1632. [11] Y. Takubo and S. Yamashita, High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG, Optics Express, 213, 21(4): 513 5139. [12] H. D. Lee, M. Y. Jeong, C. S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging, IEEE Journal of Selected Topics in Quantum Electronics, 214, 2(5): 1118. [13] A. G. Podoleanu, Optical coherence tomography, Journal of Microscopy, 212, 247(3): 29 219. [14] A. Takada, M. Fujino, and S. Nagano, Dispersion dependence of linewidth in actively mode-locked ring lasers, Optics Express, 212, 2(4): 4753 4762.