A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras

Similar documents
Improvement of terahertz imaging with a dynamic subtraction technique

Phase-sensitive high-speed THz imaging

z t h l g 2009 John Wiley & Sons, Inc. Published 2009 by John Wiley & Sons, Inc.

Combless broadband terahertz generation with conventional laser diodes

Characterization of Surface Structures using THz Radar Techniques with Spatial Beam Filtering and Out-of-Focus Detection

Instruction manual and data sheet ipca h

Terahertz control of nanotip photoemission

Measurement of Spatio-Temporal Terahertz Field Distribution by Using Chirped Pulse Technology

Time-reversal and model-based imaging in a THz waveguide

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis

Instruction manual for T3DS software. Tool for THz Time-Domain Spectroscopy. Release 4.0

STUDY OF APPLICATION OF THZ TIME DOMAIN SPECTROSCOPY IN FOOD SAFETY

Research Article Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

CALIBRATION OF TERAHERTZ SPECTROMETERS

Terahertz Subsurface Imaging System

SUPPLEMENTARY INFORMATION

The field of optics has had significant impact on a wide

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

Radial Polarization Converter With LC Driver USER MANUAL

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

Electro-optic Spectral Decoding Measurements at FLASH

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX

2.C A Substrate-Independent Noncontact Electro-Optic Probe Using Total Internal Reflection. 5. LLE Review 27, (1986).

Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Diagnosing water content in paper by terahertz radiation

Directly Chirped Laser Source for Chirped Pulse Amplification

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Monitoring the plant water status with terahertz waves

Kit for building your own THz Time-Domain Spectrometer

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

External-Cavity Tapered Semiconductor Ring Lasers

Electro-Optical Measurements at the Swiss Light Source (SLS) Linac at the PSI. First Results

Testing with Femtosecond Pulses

Technical Explanation for Displacement Sensors and Measurement Sensors

Spatially Resolved Backscatter Ceilometer

Imaging with terahertz waves

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

How-to guide. Working with a pre-assembled THz system

Polarization Sagnac interferometer with a common-path local oscillator for heterodyne detection

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Cross-Phase modulation of laser pulses by strong single-cycle terahertz pulse

Vertical External Cavity Surface Emitting Laser

Development of a high-power coherent THz sources and THz-TDS system on the basis of a compact electron linac

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

Quantifying the energy of Terahertz fields using Electro-Optical Sampling. Tom George. LCLS, Science Undergraduate Laboratory Internship Program

LOPUT Laser: A novel concept to realize single longitudinal mode laser

Designing for Femtosecond Pulses

ELECTRO-OPTIC SURFACE FIELD IMAGING SYSTEM

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Title: Ultrathin Terahertz Planar Lenses

Will contain image distance after raytrace Will contain image height after raytrace

The new CMOS Tracking Camera used at the Zimmerwald Observatory

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

Broadband Beamforming of Terahertz Pulses with a Single-Chip 4 2 Array in Silicon

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

SUPPLEMENTARY INFORMATION

RECENTLY, using near-field scanning optical

Swept Wavelength Testing:

Observational Astronomy

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes

Administrative details:

Parallel Digital Holography Three-Dimensional Image Measurement Technique for Moving Cells

Terahertz Technologies for Industrial Applications. Dr. Anselm Deninger TOPTICA Photonics AG

Single-photon excitation of morphology dependent resonance

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

~r. PACKARD. The Use ofgain-switched Vertical Cavity Surface-Emitting Laser for Electro-Optic Sampling

Instructions for the Experiment

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

Terahertz Spectroscopic/ Imaging Analysis Systems

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Improving the output beam quality of multimode laser resonators

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Non-contact Photoacoustic Tomography using holographic full field detection

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

An ion-implanted InP receiver for polarization resolved terahertz spectroscopy

A CW seeded femtosecond optical parametric amplifier

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

Ultrafast instrumentation (No Alignment!)

GRENOUILLE.

Stability of a Fiber-Fed Heterodyne Interferometer

Theory and Applications of Frequency Domain Laser Ultrasonics

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

G. Norris* & G. McConnell

A new picosecond Laser pulse generation method.

Terahertz Waves Emitted from an Optical Fiber

Generation of Terahertz Radiation via Nonlinear Optical Methods

pulsecheck The Modular Autocorrelator

THz-Imaging on its way to industrial application

UNIVERSITY OF CALIFORNIA, Santa Barbara. Probing Self-Assembled ErSb Nanowires using Terahertz Time-Domain Spectroscopy

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

Transcription:

A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras Christian Wiegand 1, Michael Herrmann 2, Sebastian Bachtler 1, Jens Klier 2, Daniel Molter 2, Joachim Jonuscheit 2 and René Beigang 1,2 1 Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Germany 2 Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany wiegand@physik.uni-kl.de Abstract: We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined. 2010 Optical Society of America OCIS codes: (040.2235) Far infrared or terahertz; (110.6795) Terahertz imaging; (300.6495) Spectroscopy, terahertz. References 1. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Two-dimensional electro-optic imaging of THz beams, Appl. Phys. Lett. 69, 1026 (1996). 2. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, Continuous-wave all-optoelectronic terahertz imaging, Appl. Phys. Lett. 80, 3003 3005 (2002). 3. F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo, Terahertz Two-Dimensional Electrooptic Sampling Using High Speed Complementary Metal-Oxide Semiconductor Camera, Jpn. J. Appl. Phys. 43, L489 L491 (2004). 4. H. Kitahara, M. Tani, and M. Hangyo, Two-dimensional electro-optic sampling of terahertz radiation using high-speed complementary metal-oxide semiconductor camera combined with arrayed polarizer, Appl. Phys. Lett. 94, 091,119 (2009). 5. S. Islam, M. Herrmann, and R. Beigang, A THz triangulation and imaging system and its applications, in The Joint 32nd International Conference on Infrared and Millimetre Waves and 15th International Conference on Terahertz Electronics, pp. 498 499 (2007). 6. M. Herrmann, S. Islam, and R. Beigang, THz Triangulation, in International Workshop on Optical Terahertz Science and Technology 2007, p. ME7 (Optical Society of America, 2007). 7. M. Herrmann, S. Islam, and R. Beigang, Refractive index measurement with a THz triangulator and radar, in The Joint 32nd International Conference on Infrared and Millimetre Waves and 15th International Conference on Terahertz Electronics, pp. 762 763 (2007). 8. T. Yasui, K. Sawanaka, A. Ihara, E. Abraham, M. Hashimoto and T. Araki, Real-time terahertz color scanner for moving objects, Opt. Express 16(2), 1208 1221 (2008). 9. Q. Wu and X.-C. Zhang, Free-space electro-optic sampling of terahertz beams, Appl. Phys. Lett. 67, 3523 (1995). 10. J. A. Valdmanis, G. Mourou, and C. W. Gabel, Picosecond electro-optic sampling system, Appl. Phys. Lett. 41, 211 (1982). 11. Z. Jiang, X. G. Xu, and X.-C. Zhang, Improvement of terahertz imaging with a dynamic subtraction technique, Appl. Opt. 39, 2982 2987 (2000). 12. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, T-ray tomography, Opt. Lett. 22(12), 904 906 (1997). (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5595

13. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, T-ray computed tomography, Opt. Lett. 27, 1312 1314 (2002). 1. Introduction For real-world applications, terahertz (THz) imaging and THz time-domain spectroscopy (TDS) systems still lack the speed that is necessary to cover large sample areas in almost real time. Speed is mainly limited by the need for mechanical delay stages as well as by single-pixel emitters and sensors resulting in a long process of scanning the sample. In order to improve measurement speed, various approaches are currently pursued ranging from faster delay lines over coupled laser systems and CW systems for certain applications to multi-pixel sensors and emitters - in particular unbalanced 2-D methods based on electro-optical sampling (EOS) working with a charge-coupled device (CCD) camera [1,2]. Also systems using CMOS cameras have been demonstrated [3]. Furthermore balanced methods using only one CMOS camera and an arrayed polarizer were shown by Kitahara et al. [4]. They state that the system noise was highly affected by unstable environmental conditions such as air temperature which likely prevents it from being used in instustrial applications. In this paper, we report on focusing a whole THz line rather than a spot on the sample, and detecting the complete line in one step. By using a balanced measurement technique, we improve the signal-to-noise ratio (SNR) and thus the measurement speed. We were able to base our work on earlier experiences we made from a system with a detection scheme based on EOS and only one 2-D CCD camera [5 7]. In contrast to the work presented by Yasui et al. [8], we do not use an amplified laser system in order to keep the system usable in an industrial environment. 2. Setup and Components We use a transmission THz TDS setup (see Fig. 1). The emitter, a 50µm bowtie antenna, is pumped with optical pulses of 80mW average power from a Ti:sapphire laser with a center wavelength of 780nm, a pulse-duration of less than 100fs, and a repetition rate of 80MHz. The modulation of the excited photocurrent is electrically controlled and the chopping signal is processed in a computer that also triggers the detector. Fig. 1. Setup. The THz line focus is achieved with a custom-made aluminum mirror which is shaped in such a manner that only one dimension of the THz beam is focused while the other remains unchanged [see Fig. 2(a)]. This goal is achieved by having a reflective surface that features a parabolic curvature in 2 dimensions and not a paraboloid curvature in 3 dimensions as most customary mirrors do. This is why we call it a 2-D parabolic mirror. The parabolic curvature (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5596

is approximated with 120 linear segments. The assembly accuracy with about 10 µm is well below wavelength. The transformation characteristics were simulated with ZEMAX R [see Fig. 2(b)]. Fig. 2. (a) 2-D Parabolic Mirror, (b) ZEMAX R -Simulation. The THz detector consists of a modified EOS setup [9]: The zinc telluride (ZnTe) crystal is illuminated by a linearly expanded laser beam and the THz line focus is imaged on the ZnTe crystal, overlapping the optical beam by the use of an indium tin oxide (ITO) plate. The ZnTe crystal is then imaged through a quarter-wave plate onto the CCD lines of two coupled industrial line-scan cameras A and B by means of a polarizing beam splitter cube. 3. Spatially Resolved, Balanced Detection The EOS measurement technique is based on modulating the birefringence of the ZnTe crystal via an applied electric field which modulates the polarization ellipticity of the optical probe beam passing through the crystal. The amplitude and phase of the electric field is then detected by polarization analysing the ellipticity modulation of the optical beam after the ZnTe crystal by means of a polarizing beam splitter cube [10]. The radiant flux in any of the the two different polarization directions is recorded with a CCD line-scan camera (see Fig. 3) for all positions along the focal line with the 2048 pixels of each CCD sensor line simultaneously. Fig. 3. Detection Scheme. By applying a pixel-wise difference algorithm to the two line signals, one achieves a balanced detection of the THz electric field. To further improve SNR, the signal is also chopped in time as proposed by Jiang et al. [11]. (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5597

A single square-wave signal generator forms a clock to the experiment. Each camera is triggered by that square-wave generator and writes its recorded lines into a data record called frame until such a frame consists of 500 lines and can be sent as a matrix Fn,m x x {A,B}; n = 1,...,500; m = 1,...,2048 (1) to the corresponding frame grabber card of the camera computer. The upper limit of 500 lines was chosen in order to guarantee error-free data transfer which depends on the processing speed of the computer. Since the bias voltage of the emitter antenna is triggered by the same squarewave signal generator via a frequency divider with a fixed factor of 2, all even line-numbers of the frame cover one state of the antenna, e.g. emitting THz, while all odd line-numbers constitute the other state of the antenna, i.e. not emitting THz. For each camera, a new frame F x n,m with its elements f x k,m respectively f x l,m defined as follows { f x k,m =(Fx i,m + Fx i+1,m )/2 F x n,m = f x l,m =(Fx i,m Fx i+1,m )/2 (2) x {A,B}; k = 1,...,250; l = 251,...,500; m = 1,...,2048; i = 1,3,5,...,499 is calculated. The first 250 lines of the frame F x n,m form a two-line average and are only used for alignment purposes. The divisor with a value of 2 is needed to make sure, that the values remain within the digital limits given by the type of data variables used in the program. The last 250 lines compose the lock-in method of the so-called electrical chopping technique. We further enhance the detected THz signal by making use of a balanced detection scheme, that is to subtract frame F A n,m of camera A from frame F B n,m of camera B F n,m =(F B n,m F A n,m )/2 n = 1,...,500; m = 1,...,2048. (3) Lines 251 to 500 of each frame F n,m are averaged into a result line which is displayed as a graph on the screen and can be saved to disk as a.tif -image file. Again, the divisor with a value of 2 keeps the values within the digital limits of the data variables. 4. Signal Processing and Measurement A THz TDS measurement is realized by moving the delay in such a manner that the THz waveform is sampled by the shorter optical laser pulses. TDS measurements thus result in a series of.tif -image files each slide of which contains a result line, i.e. the spatially resolved measured THz electric field averaged for a particular short period of delay time (see Fig. 4). By putting all slides together, one not only retrieves the waveform for each sensor pixel but can also make a tomographic film that allows to fly through the sample [12,13]. By moving the object perpendicular to the vertically aligned THz line focus and the beam direction, one can also image samples. The display rate achievable on the computer screen depends on the THz system s clock frequency and the level of averaging and is limited by the maximum camera repetition frequency. 5. System Characterization A T-shaped polytetrafluoroethylene (PTFE) sample was used for characterizing the system and checking the alignment (see Fig. 5). The bar is 27mm wide (b), 2mm high (a) and 1mm thick (r, calculated as the difference of e and d) on top of the supporting block. The supporting block behind the bar is 4mm thick (c). (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5598

Fig. 4. TDS measurement. For display simplification, the picture is rotated by 90. Fig. 5. T-shaped PTFE Sample. A spatially resolved TDS measurement of the T-shaped PTFE sample clearly shows the retarded wave front where the central part of the line focus propagates through the bar [see Fig. 6(a)]. The difference in delay time between the main wave front and the retarded middle part of = the wave front is Δt = 1.44 ps. This corresponds perfectly to a calculated shift of Δt = (n 1)r c 8 1 1.43 ps with n = 1.43, r = 1 mm and c = 3 10 ms. The height of the retarded part of the wave front measures 2.14 mm and thus matches the true dimension of 2 mm precisely. The height of the complete THz line focus measures 11.4 mm compared to an earlier measurement, where, without sample, by applying appropriate apertures, the THz focus was estimated to being 10 mm high and 2.5 mm wide. These results are close to the absolute limits of the setup given by the components, particularly the quarter-wave plate with a clear aperture of 12.7 mm. A tomographic film, showing what can be seen on the computer display while flying through the T-shaped PTFE sample is also provided together with this article. The maximum amplitude SNR achieved with this instrument is 30 amounting to 30 db. This value was measured by dividing the maximum value of a time-domain waveform [see Fig. 6(c)] by the root mean square deviation of the values derived from the same waveform up to 5 ps before the pulse maximum. The spectrum of this measurement shows that the bandwidth of the system reaches 2.5 THz [see Fig. 6(b) and Fig. 6(d)] with the sample surrounded by air with reduced water vapor content. Small blue areas representing low spectral amplitude [marked with white ellipses in Fig. 6(b)] are due to scattering and diffraction effects which result in destructive interference. Additional oscillations can be seen in the spectral plot. They result from the Fourier transformation of the echo pulses at around 50 ps. Some water vapor absorption lines can still be seen, reveal#123004 - $15.00 USD (C) 2010 OSA Received 20 Jan 2010; revised 26 Feb 2010; accepted 26 Feb 2010; published 3 Mar 2010 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5599

Fig. 6. (a) Spatially resolved THz Electric Field Amplitude in Time Domain (Media 1). (b) Spatially resolved THz Spectral Amplitude. (c) Example for a measured THz waveform at position x = 18.9mm. (d) Fourier transformation of the waveform plotted in (c). One can see that the bandwidth goes up to 2.5THz. However, due to the imperfect purging, water absorption lines around 1.4THz and 1.6THz and between 2.2THz and 2.3THz are seen. ing that the sample environment was not perfectly purged with dry air. Especially the stronger resonances around 1.4THz and 1.6THz and between 2.2THz and 2.3THz are seen. To verify the capabilities of the system for fast measurements, the camera was operated at 3.3kHz resulting in an acquisition time of 150ms per frame; 12 frames are averaged into one block. The delay stage, changing the path length of the single-folded probe beam, was moved in such a way that 93ps of delay time were measured in 14min. The measurement time for the illuminated area of 28.5mm 2 is comparable to the time a conventional scanning system would need to scan the same area with a comparably high spatial and spectral resolution. The SNR determined in these measurments dropped slightly to 25. The measurement speed is limited by the maximum speed of the delay line and can be increased by more than a factor of 100 assuming modifications to the camera control software but would cause a further drop in SNR which is currently not acceptable. The SNR may be increased by using stronger emitters, for example a larger bowtie antenna operated with higher optical power and supply voltage. 6. Conclusion A THz imaging system with a line focus was realized without the need of an amplified laser system. A balanced 1-D detection scheme with two industrial CCD line-scan cameras has been demonstrated. Furthermore, sophisticated software permits not only signal balancing but also a lock-in procedure to be applied to the data of each camera. The geometry of the line focus was measured to be 11.4mm mm in height and 2.5mm in width. The resolution in space and in delay time of the setup was verified with a T-shaped PTFE sample. The 2mm structure was perfectly resolved and the measured delay time was in agreement with predictions. A maximum SNR of 30 has been achieved so far. (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5600

Acknowledgement This work was supported by the German Federal Ministery of Education and Research and by Sartorius AG, Goettingen. (C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5601