Front-End electronics developments for CALICE W-Si calorimeter

Similar documents
Second generation ASICS for CALICE/EUDET calorimeters

CMS HG-CAL FEE Krakow

SPIROC : Silicon PM Readout ASIC

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

Status of Front End Development

Some Studies on ILC Calorimetry

A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris

ADC Measurements PARISROC Chip. Selma Conforti Di Lorenzo OMEGA/LAL Orsay

MAPS-based ECAL Option for ILC

A low power 12-bit and 25-MS/s pipelined ADC for the ILC/Ecal integrated readout

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Front-End and Readout Electronics for Silicon Trackers at the ILC

RECONFIGURABLE SYSTEM ON CHIP FOR MULTIPLE APPLICATIONS

PARISROC, a Photomultiplier Array Integrated Read Out Chip.

A radiation tolerant, low-power cryogenic capable CCD readout system:

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

The Concept of LumiCal Readout Electronics

CASIS: a Very High Dynamic Range Front-End Electronics with Integrated Cyclic ADC for Calorimetry Applications

Development of Radiation-Hard ASICs for the ATLAS Phase-1 Liquid Argon Calorimeter Readout Electronics Upgrade

PARISROC, a Photomultiplier Array Integrated Read Out Chip

SPADIC Status and plans

Readout electronics for LumiCal detector

First Results with the Prototype Detectors of the Si/W ECAL

Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments

arxiv: v1 [physics.ins-det] 5 Sep 2011

Analog Peak Detector and Derandomizer

The Scintillator HCAL Testbeam Prototype

MAROC: Multi-Anode ReadOut Chip for MaPMTs

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

CHIP DESCRIPTION & TEST SPECIFICATIONS

Final Results from the APV25 Production Wafer Testing

Development of an analog read-out channel for time projection chambers

Towards an ADC for the Liquid Argon Electronics Upgrade

Calorimetry in particle physics experiments

Beam Condition Monitors and a Luminometer Based on Diamond Sensors

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury

CAFE: User s Guide, Release 0 26 May 1995 page 18. Figure 13. Calibration network schematic. p-strip readout IC

Voltage comparator PIN CONFIGURATIONS FEATURES BLOCK DIAGRAM APPLICATIONS ORDERING INFORMATION. D, N Packages

Integrated Circuit Readout for the Silicon Sensor Test Station

Low voltage LNA, mixer and VCO 1GHz

APV25-S1 User GuideVersion 2.2

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

EASIROC, an easy & versatile ReadOut device for SiPM Stéphane CALLIER, Christophe DE LA TAILLE, Gisèle MARTIN-CHASSARD, Ludovic RAUX

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Precision, Low-Power and Low-Noise Op Amp with RRIO

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A tracking detector to study O(1 GeV) ν μ CC interactions

CLARO A fast Front-End ASIC for Photomultipliers

The CMS Tracker APV µm CMOS Readout Chip

4-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 16-Lead TSSOP AD7904/AD7914/AD7924

1GHz low voltage LNA, mixer and VCO

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

Belle Monolithic Thin Pixel Upgrade -- Update

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages

Noise Performance Analysis for the Silicon Tracking System Detector and Front-End Electronics

A Readout ASIC for CZT Detectors

OPTICAL LINK OF THE ATLAS PIXEL DETECTOR

managed by Brookhaven Science Associates for the U.S. Department of Energy VMM1 Front-end ASIC for charge-interpolating micro-pattern gas detectors

CITIROC ASIC. TIPP 2014, Amsterdam 4 June 2014 Salleh AHMAD

Highly Segmented Detector Arrays for. Studying Resonant Decay of Unstable Nuclei. Outline

Octal-Channel Ultrasound Front-End

Short-Strip ASIC (SSA): A 65nm Silicon-Strip Readout ASIC for the Pixel-Strip (PS) Module of the CMS Outer Tracker Detector Upgrade at HL-LHC

MAROC: Multi-Anode ReadOut Chip for MaPMTs

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs

Single 8-Ch/Differential 4-Ch CMOS Analog Multiplexers (Obsolete for non-hermetic. Use DG408/409 as pin-for-pin replacements.)

2-, 4-, or 8-Channel, 16/24-Bit Buffered Σ Multi-Range ADC

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

ISSN:

Converter IC for Cellular Phone. Mode Digitally-Controlled Buck. A 4 µa-quiescent-current Dual- Applications. Jianhui Zhang Prof.

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

SPADIC v0.3 and v1.0

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2

Test of VELO detector FE chips using the ODE-PP

Software Programmable Gain Amplifier AD526

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

SOFIST ver.2 for the ILC vertex detector

ATLAS LAr Electronics Optimization and Studies of High-Granularity Forward Calorimetry

Low Voltage Operating 75Ω Driver Monolithic IC MM1671~MM1676 Series

TG3: progress report on front-end electronics. C. Cattadori on behalf of A.Pullia, F.Zocca, S.Del Re, B. Schwingenheuer.

Variable-Gain High Speed Current Amplifier

CALICE AHCAL overview

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

I. Physikalisches Institut

Precision, 16 MHz CBFET Op Amp AD845

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

Noise Characteristics Of The KPiX ASIC Readout Chip

ASIC Development for the GLAST Tracker

Voltage comparator APPLICATIONS

350MHz, Ultra-Low-Noise Op Amps

Performance of 8-stage Multianode Photomultipliers

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION

Transcription:

Front-End electronics developments for CALICE W-Si calorimeter J. Fleury, C. de La Taille, G. Martin-Chassard G. Bohner, J. Lecoq, S. Manen IN2P3/LAL Orsay & LPC Clermont http::/www.lal.in2p3.fr/technique/se/flc

Introduction : FLC challenges for electronics CALICE = W-Si Calorimeter Precision measurements : ~10%/ E good linearity ( level) Good inter-calibration (% level) Low crosstalk ( level) Large dynamic range (15 bits) 0.1 MIP -> ~3 000 MIPS Auto-trigger on MIP Low noise << MIP = 40, 000 e- Hermeticity : no room for electronics! High level of integration : «SoC» Ultra-low power : ( << mw/ch) ~30 Mchannels «Tracker electronics with calorimetric performance» Low POWER is the KEY issue FLC_PHY3 18ch 10*10mm 5mW/ch ATLAS LAr FEB 128ch 400*500mm 1 W/ch 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 2

FLC W-Si front-end electronics : FLC_PHY3 ASIC 6x6 1 cm 2 photodiode wafers FLC_PHY3 18ch readout ASIC Calibration ASIC FLC_PHY3 in a nutshell [see talk by J. Fleury] Variable gain preamp : 0.3-5 V/pC Bi-gain shaper G1-G10 t p =200ns Multiplexed analog output 5MHz 18 channels, Pd = 100 mw total ENC = 4000 e- MIP/noise = 9 Emax = 1000 MIPS 2000 chips produced AMS 0.8µm BiCMOS Yield : 80% Noise and MIP on cosmic bench 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 3

Towards module0 ASIC : FLC_TECH What is missing in FLC_PHY3 : No Power Cycling Dynamic range <1000 MIPS 1 channel OPA MUX out Gain=10 Amp OPA MUX out Gain=1 No Auto-trigger on ½ MIP No Internal ADC 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 4

ASIC developments in 2004-2005 FLC_TECH1 : moving into SiGe 0.35µ 4ch preamp + shaper + power cycling Testing power cycling Submitted Apr 04, currently under test FLCPHY4 : integrating the ADC FLC_PHY3 architecture basis Power pulsing No external components Integrated ADC To be submitted april 05 FLC_TECH1 layout AMS 0.35µ FLC_TECH2 : on-chip zero-suppress Prototype of module0 front-end electronics Foreseen end 2005 ADCs Several ADC architectures being studied Pipeline ADC 0.35µ LPCC 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 5

FLC_TECH1 : noise performance Moving to 0.35 µm SiGe AMS ENC = 1000 e- @ tp=100 ns & Cd=27pF Target noise of ENC < MIP/10 = 4000 e- is (more than) achieved Detector capacitance Autotrigger ENC vs shaping time FLC_TECH1 FLC shaping ENC vs Capacitance tp=100ns 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 6

FLC_TECH1 : noise performance FLC_PHY3 : 0.8µm Series : e n = 1.6nV/ Hz C PA = 10pF + 15pF test board 1/f noise : 25e-/pF Parallel : i n = 40 fa/ Hz FLC_TECH1 : 0.35µm Series : e n = 1.4 nv/ Hz C PA = 7 pf 1/f noise : 12 e-/pf Parallel : i n = 40 fa/ Hz ENC vs shaping time FLC_PHY3 0.8µ ENC vs shaping time FLC_TECH1 0.35µ 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 7

FLC_TECH1 : Power cycling design Switching from idle current (i/1000) to nominal Change in operating point : V GS (100nA) = 0.5 V -> V GS (500 µa) = 0.85 V Requires a large current i = Cdet dv/dt => antisaturation diode feedback Rf=100M Low current : - 0.5 V Hi current : - 0.85 V Cf=3pF IN 50nA 50µA OUT Cdet= 25pF 500µA Idle 100nA 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 8

FLC_TECH1 : Power cycling results On-setting time < 20 µs Pulse amplitude and noise identical in pulsed mode than in steady mode Allows to reduce power by 99% with beams 2ms/200ms Target power of 100 µw/channel appears within reach R F C F signal ON Log scales! 20 µs Ready for pulse Preamp output during power up 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 9

Next version : FLCPHY4 Ch.1 1 Ch.2 10 Bi-gain => Full dynamic range Multiplexing Gain 1 Multiplexing Gain 10 Ch.18 Power Cycling Idle 12 bit ADC ( AMS IP) Digital Output Digital Output 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 10

FLC_PHY4 design Analog front-end : Same preamplifier as FLCTECH1 Extended dynamic range C F ->10pF Shaper bi-gain G1-G10 Power pulsing Differential Track&Hold + multiplexer Internal bias ADC : 12 bit 1MHz 8mW Commercial IP from AMS to start with 18 channels, Pd = 2mW + 8mW ADC To be submitted April 05 in AMS 0.35µ What is still missing SCA Zero suppress 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 11

FLCPHY4 : main issues Mixed signal : High speed digital features & low noise amplifier on the same die. Analog vs digital No external component : Reduce PCB thickness to 0.8mm Need to internally decouple all biases and supplies. 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 12

R&D on ADCs Pipeline ADC 10bit 5MHz 8mW Submitted in july 04 Status : under test Non linearity needs to be fixed SAR ADC C/2C 10bits 1 MHz 1mW Submitted in AMS 0.35µm Status : Waiting to be tested Wilkinson 12bit 10kHz 2.5mW Submitted in dec 04 Measured linearity of Pipeline 10 bit ADC Still a long way to go Layout of Wilkinson 12bit ADC 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 13

Conclusion FLC_TECH1 in 0.35 µm 30 µw in pulsed mode ENC = 1000 e - @ Cd=27pF (measured) FLC_PHY4 in 0.35 µm Similar to FLC_PHY3 (18ch) Will integrate a 12 bit ADC Will allow Power pulsing Will cover the 0.05-3000 MIP dynamic range Will have no external components Can be tested with test beam prototype Will be submitted in April 05 The key issue of low power (100 µw/channel) now looks under control Now ready to design module 0 front-end electronics 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 14

Backup slides 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 15

ECAL Front-End ASIC Power Cycling Auto-trigger on ½ MIP Internal ADC 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 16

R&D on ADCs : pipeline 10 bits low power high speed pipeline ADC Performance -10 bit -up to 5MS/s (Clk @ 50 MHz) -Consumption around 10mW LPC Clermond-Ferrand, Fr -Gerard Bohner -Pascal Gay -Jacques Lecoq -Samuel Manen Status -First iteration (AMS 0.8 CMOS) is working well -New iteration (AMS 0.35 CMOS) submitted in April, 19 th Amplifier Gain=2 V IN V ref Gnd To V IN stage N+1 Comparator Bit N out V ref 10 bit ADC 10 stages Stage N of pipeline ADC block schema V IN b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 17

R&D on ADCs : SAR C/2C Vin Vss Hold DAC C-2C SAR (successive approximation) ADC -10 bits -C/2C network -Consumption : 1mW -Bit rate : ~ 1 MSamples/s Vref A0 A1 A2 A3 C C C C C CLK 2C 2C 2C 2C 2C Threshold - Latch Comparator + A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 CLK SAR Control logic 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 18

FLC_TECH : a first iteration FLC_TECH description -3 channels -Multi-gain charge preamplifier -2 shaping : gain 1 and gain 10-5-depht SCA -Multiplexed output, auto-trigger and Idle mode Technology AMS 0.35 CMOS Submission April, 19 th 2004 Ch.1 1 10 SCA (depht : 5) Multiplexing Output Ch.2 Ch.3 20 march 2005 C. de La Taille next steps for CALICE front-end electronics LCWS mar 05 19