On-chip silicon photonic 2 2 mode- and polarization-selective switch with low inter-modal crosstalk

Similar documents
Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

LASER &PHOTONICS REVIEWS

Compact Silicon Waveguide Mode Converter Employing Dielectric Metasurface Structure

High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

On-chip silicon mode blocking filter employing subwavelength-grating based contra-directional coupler

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

Silicon photonic devices based on binary blazed gratings

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Signal processing for on-chip space division multiplexing

PLC-based LP11 mode rotator for mode-division multip. modifications of the content of this paper are prohi. Instructions for use

On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

1 Introduction. Research article

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

On-chip silicon polarization and mode handling devices

A GENERAL RULE FOR DESIGNING MULTIBRANCH HIGH-ORDER MODE CONVERTER. of Applied Sciences, Kaohsiung 807, Taiwan, R.O.C.

Title. Author(s)Uematsu, Takui; Kitayama, Tetsuya; Ishizaka, Yuhei; CitationIEEE photonics journal, 6(1): Issue Date Doc URL.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

A WDM passive optical network enabling multicasting with color-free ONUs

Optical 90 Hybrids Based on Silicon-on-Insulator. Multimode Interference Couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers

A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

Experimental realization of an O-band compact polarization splitter and rotator

Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides

- no emitters/amplifiers available. - complex process - no CMOS-compatible

Optics Communications

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

grating coupler array on the SOI platform for fan-in/fan-out of multi-core fibers with low insertion

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

10Gbit/s error-free DPSK modulation using a push-pull dual-drive silicon modulator

Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems

Design and characterization of low loss 50 picoseconds delay line on SOI platform

Compact, submilliwatt, 2 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities

Wavelength tracking with thermally controlled silicon resonators

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides

UC Santa Barbara UC Santa Barbara Previously Published Works

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Two bit optical analog-to-digital converter based on photonic crystals

Ultralinear heterogeneously integrated ring-assisted Mach Zehnder interferometer modulator on silicon

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Design of Three-mode Multi/Demultiplexer Based on 2-D Photonic Crystals for Mode-Division Multiplexing Transmission

GHz-bandwidth optical filters based on highorder silicon ring resonators

Binary phase-shift keying by coupling modulation of microrings

Inverse design engineering of all-silicon polarization beam splitters

CONSTANT progress of optical technologies allowed to

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing

All-Fiber Wavelength-Tunable Acoustooptic Switches Based on Intermodal Coupling in Fibers

Silicon Photonic Device Based on Bragg Grating Waveguide

Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

A tunable Si CMOS photonic multiplexer/de-multiplexer

Figure 1 Basic waveguide structure

Frequency conversion over two-thirds of an octave in silicon nanowaveguides

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

Hybrid multimode resonators based on grating-assisted counter-directional couplers

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

Mach Zehnder Interferometer True Time Delay Line

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Low-voltage, high speed, compact silicon modulator for BPSK modulation

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Single-mode lasing in PT-symmetric microring resonators

Resonance Free Light Recycling

A Novel Vertical Directional Coupler Switch With Switching-Operation-Induced Section and Extinction-Ratio-Enhanced Section

THE USE OF SOA-BASED MACH-ZEHNDER INTERFEROMETER IN DESIGNING/IMPLEMENTING ALL OPTICAL INTEGRATED FULL ADDER-SUBTRACTOR AND DEMULTIPLEXER

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Silicon high-speed binary phase-shift keying modulator with a single-drive push pull high-speed traveling wave electrode

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission

Integrated MM! optical couplers and optical switches

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

AN INTERLEAVER is a periodic optical filter that combines

Use of Reconfigurable IM Regions to Suppress Propagation and Polarization Dependent Losses in a MMI Switch

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss

Guided resonance reflective phase shifters

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching

50-Gb/s silicon optical modulator with travelingwave

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Transcription:

Research Article Vol. 5, No. 5 / October 2017 / Photonics Research 521 On-chip silicon photonic 2 2 mode- and polarization-selective switch with low inter-modal crosstalk YONG ZHANG, YU HE, QINGMING ZHU, CIYUAN QIU, AND YIKAI SU* State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China *Corresponding author: yikaisu@sjtu.edu.cn Received 16 June 2017; revised 23 August 2017; accepted 31 August 2017; posted 5 September 2017 (Doc. ID 298197); published 28 September 2017 Mode- and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-chip silicon 2 2 mode- and polarization-selective switch that can route four data channels on two modes and two polarizations simultaneously is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The overall insertion losses are lower than 8.6 db. To reduce the inter-modal crosstalk, polarization beam splitters are added to filter the undesired polarizations or modes. The measured inter-modal and intra-modal crosstalk values are below 23.2 and 22.8dBfor all the channels, respectively. 2017 Chinese Laser Press OCIS codes: (130.3120) Integrated optics devices; (060.4230) Multiplexing; (130.4815) Optical switching devices. https://doi.org/10.1364/prj.5.000521 1. INTRODUCTION Optical communication technologies have been advancing rapidly for several decades [1 3]. Multiple dimensions of an optical carrier, including time, wavelength, polarization, amplitude, and phase, have been explored to increase data-carrying capacity. Space-division multiplexing (SDM) in multi-core fibers [4,5] and mode-division multiplexing (MDM) in fewmode fibers [6 8] are promising options to increase transmission capacity. Because of the merits of a compact footprint, low power consumption, and compatibility with CMOS fabrication processes [9 12], MDM in silicon photonic integrated circuits has attracted much attention in the past years [13 18]. Switching and routing of data signals are basic requirements in network nodes. In analogy to a conventional wavelength selective switch (WSS) that routes any wavelength channel from one input port to any output port [19], a switch that can route mode- and polarization-multiplexed signals can effectively increase the capacity and add new functionalities. A four-channel silicon switch that used MDM signals on different wavelengths was achieved with crosstalk values of < 16.8 db [20]. Recently, we demonstrated an on-chip silicon 1 2 mode- and polarization-selective switch (MPSS) on the same wavelength with crosstalk values of < 15 db [21]. These reported crosstalk values need to be reduced to realize error-free switching in practical systems. The power penalty originating from the crosstalk is modulation format dependent [22,23], and typically at least a 20 db suppression ratio is needed between different modes and polarizations. Moreover, these silicon mode and polarization switches are in 1 2 configurations, while 2 2 switches are desired as the fundamental building blocks of a general N N switch fabric [24]. In this paper, we demonstrate the first on-chip silicon 2 2 MPSS, to the best of our knowledge. The proposed 2 2 MPSS can route four data channels of two modes and two polarizations on the same wavelength from one input port to any output port. Polarization beam splitters (PBSs) are added to filter the undesired modes or polarizations; therefore, the measured inter-modal crosstalk values are below 23.2 db at 1550 nm for all the channels. The overall insertion losses and the intra-modal crosstalk values are below 8.6 and 22.8 db, respectively. The footprint of the MPSS device is 1.6 mm 1.7 mm. The proposed MPSS device needs to couple to few-mode fibers for application in optical fiber communications. Mode converters, such as grating-couplerbased [25] or edge-coupler-based [26,27], are required to couple high-order modes from few-mode fibers to the silicon waveguides. 2327-9125/17/050521-06 Journal 2017 Chinese Laser Press

522 Vol. 5, No. 5 / October 2017 / Photonics Research Research Article 2. DEVICE DESIGN AND OPERATION PRINCIPLE The schematic configuration of the on-chip silicon 2 2 MPSS for two modes and two polarizations is shown in Fig. 1. It can route four channels of TE 0, TE 1, TM 0, and TM 1 modes. The routing of the channels is realized by the fundamental mode switches. Two transverse electric modes (TE 0 and TE 1 ) and two transverse magnetic modes (TM 0 and TM 1 ) are injected from the input port I1 or I2, and then de-multiplexed into four fundamental mode channels by the mode de-multiplexers and the PBSs based on selective mode coupling in asymmetric directional couplers [12]. Signals are then routed by the corresponding TE 0 or TM 0 Mach Zehnder interferometer (MZI)-based thermal-tuning switches. The routed signals are multiplexed by the polarization beam combiners (PBCs) and the mode multiplexers, and then output from port O1 or O2. The dominant inter-modal crosstalk is induced by the orthogonally polarized modes in the mode multiplexers and de-multiplexers [28]. Therefore, PBSs are cascaded to the mode de-multiplexers to filter the undesired polarizations or modes and reduce the inter-modal crosstalk. The proposed 2 2 MPSS chip consists of four mode (de)multiplexers, 10 PBSs, eight thermo-optic MZI switches, eight 1 2 multi-mode interferometer (MMI) couplers, two PBCs, and 40 waveguide crossings. Figure 2 shows the structures of the basic elements in the MPSS. The PBS (PBC) based on directional couplers [29] is used to separate or combine the TE 0 and TM 0 polarizations. The mode (de)multiplexer is Fig. 1. Schematic configuration of the 2 2 MPSS for two modes and two polarizations. As an example, the TE 0 and TE 1 channels of Input 1 and the TM 0 and TM 1 channels of Input 2 are routed to Output 1 and other channels are routed to Output 2. The calculated mode patterns of the TE 0, TE 1, TM 0, and TM 1 modes are intensity profiles. The intensity profiles of the TM 0 and TM 1 modes look like second-order TM modes in the normal direction. It is attributed to the small height (220 nm) of the silicon waveguides. Fig. 2. Basic elements of the 2 2 MPSS. (a) A PBS and a mode multiplexer; (b) a waveguide crossing; (c) a 1 2 MMI; (d) an MZI switch. implemented by two asymmetric directional couplers to (de)multiplex the high-order modes (TE 1 and TM 1 )[13], as shown in Fig. 2(a). The widths of the multimode bus waveguide and access waveguides are optimized to achieve highly efficient selective mode coupling by using 3D finite-difference time-domain (FDTD) simulations. The waveguide widths w 1, w 2, w 3, and w 4 are 0.400, 1.035, 0.845, and 1.045 μm, for multiplexing the TE 0, TM 0, TE 1, and TM 1 modes, respectively. Adiabatic tapers are used to connect the waveguides with different widths. The coupling lengths for multiplexing the TM 0, TE 1, and TM 1 modes are 8.25, 18.5, and 8.25 μm, respectively. The maximum number of waveguide crossings in an optical path is seven, so lowloss waveguide crossings are indispensable in the MPSS device. The waveguide crossings are based on 90 -crossed MMIs [30], which are designed to achieve low losses and crosstalk based on 3D-FDTD simulations. The width and length of the MMIs are optimized to be 1.73 μm (1.73 μm) and 7.84 μm (6.14 μm) for the TE 0 TE 0 (TM 0 TM 0 ) case, respectively. The 2 2 MZI switch consists of two 2 2 MMI couplers connected by two equal-length waveguide arms for broadband operation [31]. For the TE 0 (TM 0 ) polarization, the width and length of the 2 2 MMI are 6.0 μm (6.0 μm) and 41.5 μm (31.5 μm), respectively, and its input and output waveguides are linearly tapered from 500 nm to 1.4 μm in a length of 8.5 μm to reduce insertion losses. The gap between the two access waveguides w g is 0.6 μm. The heater lengths in the MZI switches are 50 μm. 1 2 MMIs are used as 3 db couplers in the MPSS. The width and length of the 1 2 MMI are optimized to be 2.4 and 1.8 μm, respectively, and the input and output waveguides of the device are linearly tapered from 500 to 750 nm in a length of 1.5 μm. The gap between the two access waveguides w g is 0.15 μm. 3. DEVICE FABRICATION AND RESULTS Multiple MPSS devices were fabricated on a silicon-oninsulator (SOI) wafer (220-nm-thick silicon on 3000-nm-thick silica) by electron-beam lithography (Vistec EBPG 5200) and inductively coupled plasma (ICP) etching. A 1-μm-thick SiO 2 cladding was deposited using plasma enhanced chemical vapor deposition (PECVD). 100-nm-thick Ti heaters and 1-μmthick Al contact pads were formed by the lift-off process. A microscope photo of a fabricated MPSS chip is shown in Fig. 3(a). Figure 3(b) depicts the magnified scanning electron

Research Article Vol. 5, No. 5 / October 2017 / Photonics Research 523 Table 1. Measured Performance of Building Blocks Building Block Insertion Loss (db) Crosstalk (db) PBS for TE 0 0.54 22 PBS for TM 0 0.83 24 Mode multiplexer for TE 1 1.6 18 Mode multiplexer for TM 1 1.32 23 Crossing for TE 0 0.09 35 Crossing for TM 0 0.12 30 Fig. 3. (a) Microscope photo of a fabricated MPSS chip. (b) Magnified SEM images and microscope photos of a PBS, a mode multiplexer, waveguide crossings, and an MZI switch. microscope (SEM) images and microscope photos of a PBS, a mode multiplexer, waveguide crossings, and an MZI switch. The footprint of the MPSS device is less than 1.6 mm 1.7 mm. In our measurements, grating couplers were used to couple the TE 0 - and TM 0 -polarized light into/out of the chip. The design and the measured coupling losses of the grating couplers have been reported previously [32]. The periods of the TE and TM grating couplers are 630 and 1080 nm, respectively. The etching depth of both grating couplers is 70 nm. The coupling losses are 5.6 and 7.0 db port, respectively. To couple the fundamental TE 0 - and TM 0 -polarized light into and out of the chip using the grating couplers, mode (de)multiplexers are added to the input (output) ports of the MPSS. The transmission spectra of the MPSS were measured and normalized to that of the identical grating couplers and the mode (de)multiplexers fabricated on the same chip. A tunable continuous wave (CW) laser (Keysight 81960A) and an optical powermeter were used to characterize the devices. For off-chip communications through fibers, mode adapters are needed to couple high-order modes from few-mode fibers to the silicon chip [25,27]. We also fabricated the PBSs, mode (de)multiplexers, and waveguide crossings on the same wafer and characterized the performance of these unit devices. The measured insertion losses of the PBS are 0.54 and 0.83 db for the TE 0 and TM 0 polarizations, respectively. The insertion losses of the mode multiplexer at 1550 nm are 1.60 and 1.32 db for the TE 1 and TM 1 channels, respectively. The measured crosstalk values are lower than 18 db at 1550 nm for all the channels. The insertion losses of the fabricated waveguide crossings are lower than 0.09 and 0.12 db for the TE and TM polarizations, respectively, and the crosstalk values are lower than 30 db for both polarizations. The insertion losses and crosstalk values of the building blocks are shown in Table 1. The measured transmission spectra of the MPSS device are shown in Fig. 4. Take the TE 0 channel at input port I1 as an example: the signal is switched to output port O1 when the MZI heating power is 10.45 mw, and the signal is routed to output port O2 when the applied heating power is 25.76 mw. The insertion losses are lower than 5.1 db at 1550 nm, and are mainly caused by the scattering loss, incomplete coupling in the mode multiplexer and the PBS, and 3 db coupling loss. For all the other channels, optical signals from different input ports can be routed to arbitrary output ports independently by applying different powers on the corresponding MZI switches. The overall insertion losses are lower than 8.6 db at 1550 nm for all the channels. The inter-modal crosstalk is a critical challenge toward realizing error-free switching in practical systems. We measured the inter-modal crosstalk between channels by launching a signal to a fixed input port and measuring the transmission responses at each output port one by one, as shown in Fig. 4. The MZI switches were set to ensure the maximum output powers at the same output port. For example, when a signal was injected to the I1-TE 0 channel and the response was measured at the O2-TE 1 channel, the MZI switches for the I1-TE 0 and I1-TE 1 channels were both set to output to the O2 port. The measured inter-modal crosstalk values are lower than 23.2 db for all the channels at 1550 nm. The power consumption of a TM MZI thermo-optic switch is higher than that of a TE switch due to the smaller optical confinement factor of the TM mode in a silicon waveguide. The measured switching powers for the TM channels are higher than that for the TE channels, except that for the I1-TM 0 channel. We attribute the I1-TM 0 channel results to fabrication imperfections. We further measured the intra-modal crosstalk values introduced by the MZI switches, as shown in Fig. 5. For the TE 0 channel of port I1, the intra-modal crosstalk values are lower than 26.6 db at 1550 nm. For all the channels, the overall intra-modal crosstalk values are below 22.8 db at 1550 nm. The different wavelength dependency among modes

524 Vol. 5, No. 5 / October 2017 / Photonics Research Research Article Fig. 4. Measured inter-modal crosstalk performance. is attributed to different coupling lengths and waveguide widths of the asymmetric directional couplers. Some noise is attributed to imperfections introduced in the fabrication and the low received power, which is close to the detection limit of the optical powermeter. These inter- and intra-modal crosstalk values are comparable to those of integrated mode-multiplexer devices [13,15,33], indicating that the MPSS exhibits low crosstalk. The switching capacity of the MPSS can be further scaled when combining with wavelength-division multiplexing technology, while maintaining Fig. 5. Measured intra-modal crosstalk performance.

Research Article Vol. 5, No. 5 / October 2017 / Photonics Research 525 the same switching granularity [21]. Mode- and polarizationmultiplexed signals are first demultiplexed to enable single-mode operation for the subsequent wavelength de-multiplexing. Such a new mode-, polarization-, and wavelength-selective switch (MPWSS) may become an important building block in future high-capacity optical networks. The switching time of the MPSS device was measured by applying a square electric wave to one heater and detecting the output power simultaneously by a photodetector. The rise time and fall time are 5.5 and 4.9 μs, respectively. In the experiment, we tried to find the switching power to obtain the maximum output optical power manually, while it is possible to achieve switch control and calibration with built-in power monitors and a feedback loop [34,35]. 4. CONCLUSION We propose and experimentally demonstrate what we believe is the first on-chip silicon 2 2 MPSS, which is the fundamental building block of an N N switch matrix. To reduce the intermodal crosstalk values, PBSs are added to filter the undesired polarizations or modes. The measured inter-modal crosstalk values are below 23.2 db at 1550 nm. For all the channels, the overall insertion losses are <8.6 db. The measured intramodal crosstalk values introduced by the MZI switches are lower than 22.8 db. Funding. National Natural Science Foundation of China (NSFC) (61235007, 61505104, 61605112); 863 High-Tech Program (2015AA017001); Science and Technology Commission of Shanghai Municipality (STCSM) (15ZR1422800, 16XD1401400). Acknowledgment. We thank the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University for the support in device fabrication. REFERENCES 1. P. J. Winzer, Making spatial multiplexing a reality, Nat. Photonics 8, 345 348 (2014). 2. H.-L. Zhou, D.-Z. Fu, J.-J. Dong, P. Zhang, D.-X. Chen, X.-L. Cai, F.-L. Li, and X.-L. Zhang, Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect, Light Sci. Appl. 6e, e16251 (2017). 3. Y. Kodama, Y. Yamaguchi, A. Kanno, T. Kawanishi, M. Izutsu, and H. Nakajima, Mode-division multiplexing LiNbO 3 modulator using directional coupler, in OptoElectronics and Communications Conference (OECC) held jointly with International Conference on Photonics in Switching (PS) (2016), paper ThD3-5. 4. D. Richardson, J. Fini, and L. Nelson, Space-division multiplexing in optical fibres, Nat. Photonics 7, 354 362 (2013). 5. Y. Ding, V. Kamchevska, K. Dalgaard, F. Ye, R. Asif, S. Gross, M. J. Withford, M. Galili, T. Morioka, and L. K. Oxenløwe, Reconfigurable SDM switching using novel silicon photonic integrated circuit, Sci. Rep. 6, 39058 (2016). 6. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5A.1. 7. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier, Opt. Express 20, 2668 2680 (2012). 8. J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. Liu, Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core, Photon. Res. 5, 261 266 (2017). 9. D. Dai, J. Bauters, and J. E. Bowers, Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction, Light Sci. Appl. 1, e1 (2012). 10. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, Lowering the energy consumption in silicon photonic devices and systems, Photon. Res. 3, B28 B46 (2015). 11. L. Thylén and L. Wosinski, Integrated photonics in the 21st century, Photon. Res. 2, 75 81 (2014). 12. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations, Opt. Express 24, 6586 6593 (2016). 13. D. Dai, J. Wang, and Y. Shi, Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelengthcarrier light, Opt. Lett. 38, 1422 1424 (2013). 14. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, WDM-compatible mode-division multiplexing on a silicon chip, Nat. Commun. 5, 3069 (2014). 15. J. Wang, S. He, and D. Dai, On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarizationdivision-multiplexing, Laser Photon. Rev. 8, L18 L22 (2014). 16. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing, Laser Photon. Rev. 9, 339 344 (2015). 17. X. Wu, K. Xu, D. Dai, and H. Tsang, Mode division multiplexing switch for on-chip optical interconnects, in OptoElectronics and Communications Conference (OECC) held jointly with International Conference on Photonics in Switching (PS) (2016), paper ThE2-4. 18. D. Dai and S. Wang, Silicon-based reconfigurable optical add-drop multiplexer for hybrid MDM-WDM systems, in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2C.1. 19. C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis, Monolithic flexiblegrid 1 2 wavelength-selective switch in silicon photonics, J. Lightwave Technol. 30, 473 478 (2012). 20. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, On-chip mode-division multiplexing switch, Optica 2, 530 535 (2015). 21. Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, and R. Soref, Silicon 1 2 mode- and polarization-selective switch, in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4E.2. 22. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, Penalties from in-band crosstalk for advanced optical modulation formats, in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Tu.5.B.7. 23. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer, Opt. Express 21, 10376 10382 (2013). 24. A. W. Poon, X. Luo, F. Xu, and H. Chen, Cascaded microresonatorbased matrix switch for silicon on-chip optical interconnection, Proc. IEEE 97, 1216 1238 (2009). 25. B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, Compact fiber grating coupler on SOI for coupling of higher order fiber modes, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh1B.2.

526 Vol. 5, No. 5 / October 2017 / Photonics Research Research Article 26. D. Melati, A. Alippi, and A. Melloni, Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission, Opt. Express 24, 12625 12634 (2016). 27. D. Dai and M. Mao, Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits, Opt. Express 23, 28376 28388 (2015). 28. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, Improved 8-channel silicon mode demultiplexer with grating polarizers, Opt. Express 22, 12799 12807 (2014). 29. D. Dai, Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides, J. Lightwave Technol. 30, 3281 3287 (2012). 30. Y. Liu, J. M. Shainline, X. Zeng, and M. A. Popović, Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling, Opt. Lett. 39, 335 338 (2014). 31. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, Compact 1 N thermo-optic switches based on silicon photonic wire waveguides, Opt. Express 13, 10109 10114 (2005). 32. Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, Ultracompact and highly efficient silicon polarization splitter and rotator, APL Photon. 1, 091304 (2016). 33. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood, A 60 Gb/s MDM- WDM Si photonic link with <0.7 db power penalty per channel, Opt. Express 22, 18543 18555 (2014). 34. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, A high-speed, tunable silicon photonic ring modulator integrated with ultraefficient active wavelength control, Opt. Express 22, 12628 12633 (2014). 35. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, Wavelength tuning and stabilization of microring-based filters using silicon inresonator photoconductive heaters, Opt. Express 23, 25084 25097 (2015).