Simulation of semiconductor modelocked ring lasers with monolithically integrated pulse shaping elements

Similar documents
Mode-locked lasers in InP photonic integrated circuits

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser

Gain Measurements of Fabry-Pérot InP/InGaAsP Lasers. using an Ultra High Resolution Spectrometer

A continuous-wave Raman silicon laser

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

360 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 44, NO. 4, APRIL /$ IEEE

Testing with Femtosecond Pulses

Ultrafast Optical Physics II (SoSe 2017) Lecture 8, June 2

Femtosecond pulse generation

All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

40-Gb/s Optical Buffer Design and Simulation

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Directly Chirped Laser Source for Chirped Pulse Amplification

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating

Ultra High Speed All Optical Demultiplexing based on Two Photon Absorption. in a Laser Diode. Glasnevin, Dublin 9, IRELAND

All-Optical Signal Processing and Optical Regeneration

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

How to build an Er:fiber femtosecond laser

Wavelength switching using multicavity semiconductor laser diodes

In Search of the Elusive All-Optical Packet Buffer

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators

Large-signal capabilities of an optically injection-locked semiconductor laser using gain lever

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

High-Power Highly Linear Photodiodes for High Dynamic Range LADARs

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Four wave mixing and parametric amplification in Si-nano waveguides using reverse biased pnjunctions

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

A new picosecond Laser pulse generation method.

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Designing for Femtosecond Pulses

Optical Amplifiers (Chapter 6)

Lecture 9 External Modulators and Detectors

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Thermal Crosstalk in Integrated Laser Modulators

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

InP-based Waveguide Photodetector with Integrated Photon Multiplication

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

About Omics Group conferences

LASER DIODE MODULATION AND NOISE

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

Tailoring the dynamics of multisection lasers for 40 Gb/s direct modulation

Ultralow-power all-optical RAM based on nanocavities

Self-phase-modulation induced spectral broadening in silicon waveguides

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Demonstration of directly modulated silicon Raman laser

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING

Low threshold continuous wave Raman silicon laser

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Longitudinal Multimode Dynamics in Monolithically Integrated Master Oscillator Power Amplifiers

Characterization of Chirped volume bragg grating (CVBG)

Advances in Widely Tunable Lasers Richard Schatz Laboratory of Photonics Royal Institute of Technology

Optical Complex Spectrum Analyzer (OCSA)

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

2-R REGENERATION EXPLOITING SELF-PHASE MODULATION IN A SEMICONDUCTOR OPTICAL AMPLIFIER

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Dispersion properties of mid infrared optical materials

DIAMOND-SHAPED SEMICONDUCTOR RING LASERS FOR ANALOG TO DIGITAL PHOTONIC CONVERTERS

Characterization of Photonic Structures with CST Microwave Studio. CST UGM 2010 Darmstadt

DISTRIBUTION A: Distribution approved for public release.

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

3 General Principles of Operation of the S7500 Laser

Special 30th Anniversary

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

A Comparison of Optical Modulator Structures Using a Matrix Simulation Approach

All-optical logic gates using a semiconductor optical amplifier assisted by an optical filter

External-Cavity Tapered Semiconductor Ring Lasers

Multi-format all-optical-3r-regeneration technology

Chapter 8. Digital Links

High-Resolution AWG-based fiber bragg grating interrogator Pustakhod, D.; Kleijn, E.; Williams, K.A.; Leijtens, X.J.M.

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Application Instruction 001. The Enhanced Functionalities of Semiconductor Optical Amplifiers and their Role in Advanced Optical Networking

Slow, Fast, and Backwards Light: Fundamental Aspects

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

InP-based Photonic Integration: Learning from CMOS

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Broadcast and distribution networks

All-optical clock division at 40 GHz using a semiconductor amplifier. nonlinear interferometer

STUDY OF CHIRPED PULSE COMPRESSION IN OPTICAL FIBER FOR ALL FIBER CPA SYSTEM

atom physics seminar ultra short laser pulses

Phase-Lock Techniques for Phase and Frequency Control of Semiconductor Lasers

ELSEVIER FIRST PROOFS

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Transcription:

Simulation of semiconductor modelocked ring lasers with monolithically integrated pulse shaping elements Martijn Heck, Yohan Barbarin, Erwin Bente Daan Lenstra Meint Smit Richard Nötzel, Xaveer Leijtens, Siang Oei Research Institute Technische Universiteit Eindhoven The Netherlands Supported by the Freeband program of the Dutch Ministery of Economic Affairs and the NRC Photonics Program of NWO COST Action 288 NUSOD 25 Berlin 22/9/25 1

Content Introduction to technology and motivation Modelocked ring laser model options for the realisation of a fs laser Modelocked ring laser bidirectional model NUSOD 25 Berlin 22/9/25 2

Optical Integrated Circuits in InP / InGaAsP Passive Waveguide Devices + Semiconductor Optical Amplifier + EO Phase Modulator InP InGaAsP (1.3) Loss 1dB/cm InP Light field Waveguide Passive components Active components Shallowly-etched Deeply-etched SOA or Sat. Abs. NUSOD 25 Berlin 22/9/25 3

Shallow waveguides Deeply etched waveguides 14 mm SOA Deeply etched AWG AWG Phase mod. NUSOD 25 Berlin 22/9/25 4

Passively modelocked lasers Modelocking using a reversely biased SOA section Slow saturable absorber modelocking Application: all optical clock recovery (4GHz) Ring laser configuration lithographic control of the cavity length injection locking combination with other components (e.g. all-optical switches) choose position of absorber gain section NUSOD 25 Berlin 22/9/25 5

Integrated femtosecond lasers Applications: Passively modelocked lasers Telecommunication THz bit rate communication Multi-wavelength ps source OCDMA source High speed optical ADC Pulses with controlled amplitude and phase Sensing, imaging, coherent control Approach: Dispersion control Self phase modulation compensating devices with(in) the laser Building blocks are available How do we put these together? NUSOD 25 Berlin 22/9/25 6

Modelling approach Model of modelocked ring laser AWG based integrated pulse shaping components Unidirectional ω / t Spectrum BW D AWG SOA SA MMI Round trip time Round trip time Spectrum ω / t Round trip time NUSOD 25 Berlin 22/9/25 7

Time domain: SOA Optical pulse description E ( t) P( t) exp( iω t iϕ( t) ) = Rate equations [J.M. Tang and K.A. Shore IEE Proc. Optoelectron, Vol 146, No. 1, 1999] s G =Γa N N = Γ 1 G N ( ) G G 1 G ε P 2 2 = + t τ E 1+ ε P s tr sat Iτ G anntr qvn 1 P Γ 2 β ' 2 tr P 2 ε 1 Non-linear gain compression carrier heating & spectral hole burning ε 2 Gain compression due to two photon absorption NUSOD 25 Berlin 22/9/25 8

SOA P and φ Power P G ε P = z 1+ ε 2 2 1 2 P 2Γ2β2 P αint 1P σ P Phase 1 ε GP ε P 2 φ = 1 2 α NG αt z 2 1+ ε1p Γ ' 2 ω c n 2 1 P σ α N Carrier density linewidth enhancement factor α T Carrier temperature linewidth enhancement factor n 2 Nonlinear refractive index NUSOD 25 Berlin 22/9/25 9

Q = Γa N NSA, trsa, Saturable Absorber Q Q Q 1 Q = t τ E 1+ ε Q P Q = z 1+ ε φ = z eff, SA sat, SA 1, SA 1 α 2 1, SA Q NSA, Q P P Effect of reverse bias on the diode in τ eff Ignored two photon absorption and fast non linear refraction. Phase change due to carrier heating is ignored. [Schell et al, IEEE J.QE, v32, p118, 1996] NUSOD 25 Berlin 22/9/25 1

Frequency domain: AWG, BW and D Optical pulse description MMI SOA DFT AWG BW E () t = E exp( iω t) n= Frequency filters (D) H n 2 ( ω ) = exp k" ( ω ω ) i 2 tot n SA D IDFT (AWG) NUSOD 25 Berlin 22/9/25 11

E Discrete Fourier Transform algorithm () t P() t exp ( iω t iϕ( t) ) E() t = E exp( iω t) = DFT n= n n MMI SOA SA AWG BW D IDFT Approximation valid when change per roundtrip is limited NUSOD 25 Berlin 22/9/25 12

Modeling the ring laser InP/InGaAsP active-passive (Q1.25/Q1.55) 4 GHz cavity 5% outcoupling 3nm system bandwidth Absorber CW Amplifier NUSOD 25 Berlin 22/9/25 13

Simulated pulse widths 8 k tot =.1ps 2, L SOA =5μm, L SA =5μm, α N =5, α T =3 Pulse width (ps) 7 6 5 4 3 2 small stability window @ τsa = 1-15ps self-phase modulation vs. gain dispersion open gain window trailing the pulse τ SA = 5ps 1ps 15ps 1 5 7 9 11 13 15 17 19 21 Injection current (ma) NUSOD 25 Berlin 22/9/25 14

Simulated pulse chirp.4.35.8.6 Power (W).3.25.2.15.1.5 -.5 Pulsewidths 1.5-2.ps 5 1 15 2 25-1 Time (ps) Upchirp of up to 2THz.4.2 -.2 -.4 upchirped pulses -.6 -.8 Chirp (THz) + dispersive element compression NUSOD 25 Berlin 22/9/25 15

Extracavity pulse compression 1.6 Pulse width (ps) 1.4 1.2 1.8.6.4.2 -.2 -.4 -.6 -.8-1 Dispersion k" (ps^2) -1.2 7 9 11 13 15 17 19 21 Injection current (ma) NUSOD 25 Berlin 22/9/25 16

IFSL concepts Proposed solutions for Integrated Femtosecond Semiconductor Lasers (IFSL) extracavity pulse compression breathing mode NUSOD 25 Berlin 22/9/25 17

Pulse compressor PHM AWG PHM PHM AWG MMI SOA SA NUSOD 25 Berlin 22/9/25 18

Discrete phase filter 2x2GHz 3 Phase (rad) 2 1-1 AWG channel transmission -2-3 -2-1.5-1 -.5.5 1 1.5 2 Frequency (THz) NUSOD 25 Berlin 22/9/25 19

AWG channel transmission 1.8 2GHz AWG channel spacing Gaussian flattened Transmission.6.4.2-2 -15-1 -5 5 1 15 2 Frequency (GHz) NUSOD 25 Berlin 22/9/25 2

Extracavity pulse compression FWHM 1.6ps 3fs 1 Gaussian.8 flattened Power (W).6.4 input pulse.4.2.1 5 1 15 2 25 Time (ps) NUSOD 25 Berlin 22/9/25 21

Realisation of compressor Martijn Heck Pascual Munoz (UPVLC - Valencia) NUSOD 25 Berlin 22/9/25 22

IFSL concepts Proposed solutions for Integrated Femtosecond Semiconductor Lasers (IFSL) extracavity pulse compression breathing mode Self-phase modulation gain dispersion instabilities minimize SPM! NUSOD 25 Berlin 22/9/25 23

Breathing mode configuration Compensate phase shift in SOA: to 2π Minimizes SPM in SOA Dispersive cavity Small stability regime t ω t ω t AWG 1 2 SOA SOA PHM PHM AWG N SOA PHM SA MMI Bandwidth: #channels x channel spacing NUSOD 25 Berlin 22/9/25 24

.18.16 Breathing mode 6 x 4GHz, τ abs =15ps Pulse power 1 Power (W).14.12.1.8.6.4 45fs pulses @ 4GHz.5 Δφ SOA = -Δφ PHM during start-up no self-starting! -.5 Chirp (THz) decrease τ SA from 15ps to 5ps.2 5 1 15 2 25-1 Time (ps) M2 NUSOD 25 Berlin 22/9/25 25

Breathing mode 6 x 4GHz, τ abs =5ps.7.6.5 Power (W).4.3.2.1 5 1 15 2 25 Time (ps) NUSOD 25 Berlin 22/9/25 26

Multi-wavelength ps pulse source Power (W).2.18.16.14.12.1.8.6.4.2 5 1 15 2 25 Time (ps) MWL pulse source FWHM 6ps 6 colors@4ghz synchronised -6GHz +2GHz +1GHz NUSOD 25 Berlin 22/9/25 27

All-active 15GHz Ring MLL 15GHz ring cavity with adiabitic bends 5µm SA Directional coupler Angled facet output + AR coating NUSOD 25 Berlin 22/9/25 28

15GHz Ring MLL results optical spectrum V=-1.6V I=145mA 6dB Linewidth: 2 MHz at -2dB optrical power (W).12.1.8.6.4.2 optrical power (dbm) -25-3 -35-4 -45-5 -55-6 152 1525 153 1535 154 (nm) 4.5 nm 152 1525 153 1535 154 (nm) Simulation 3.3 ps pulse width 1.2THz detuning 4.5nm bandwidth NUSOD 25 Berlin 22/9/25 29

Bidirectional model Ring divided in 25 fs segments Reflections No phase equation No TPA and gain compression G N =ΓaNNtr ln Ntr NUSOD 25 Berlin 22/9/25 3

The spectral bandwidth 14 elements Output filter = f (x n ) A Bessel digital filter is used: Numerically stable The transmission is similar to the measured SOA gain spectrum. NUSOD 25 Berlin 22/9/25 31

Positioning of the absorber CCW CW CCW CW Absorber Amplifier Absorber Amplifier NUSOD 25 Berlin 22/9/25 32

Evolution of the pulses in the cavity Absorber CCW Amplifier CW NUSOD 25 Berlin 22/9/25 33

26 GHz ring laser result Modelocked 26GHz ring laser by Y. Barbarin et al. IEEE PTL, publ. Nov 25 NUSOD 25 Berlin 22/9/25 34

Further development Two directional model phase equations and nonlinear effects (amp. And abs.) no intra-cavity reflections.6 4GHz ring 1 segments 14th order digital bandwidth filter 7 µm long amplifier 2µm long SA ICW j ICCW j.4.2 22 44 66 88 1.1. 1 4 T ICW j.5 Phase_CW j.2.4.2 Result for I amp =175mA and T abs = 15ps Power and Phase v.s. time Pulse width v.s. time after start-up.2 4773 4783 4793 483 4813 4823 Time in ps 8. 1 12 2 7. 1 12 6. 1 12 5. 1 12 31 4. 1 12 32 3. 1 12 2. 1 12 Time in ps 1.35 ps 1. 1 12 2 2 3 4 5 6 7 8 Time in ps NUSOD 25 Berlin 22/9/25 35

Conclusions Set up simulation tools for designing integrated modelocked lasers Simulations point a way to integrated fs laser systems Modelocked laser plus compressor Separate amplification of spectral components In a ring the power ratio in the two directions can be controlled through the relative position of the amplifier and absorber We have started to use the models: to design laser system to analyse results obtained with devices NUSOD 25 Berlin 22/9/25 36

NUSOD 25 Berlin 22/9/25 37