Faculty of Electronics and Computer Engineering

Similar documents
DESIGN OF INTEGRATED FILTER-ANTENNA FOR WIRELESS COMMUNICATIONS NOOR AZIAN BINTI JONO UNIVERSITI TEKNIKAL MALAYSIA MELAKA

COMPARATIVE STUDY OF REGTANGULAR MICROSTRIP PATCH ANTENNA ARRAY DESIGN ABDULLAHI MOALLIM YUSUF

SUBSTRATE INTEGRATED WAVEGUIDE WITH DEFECTED GROUND STRUCTURE FOR MICROWAVE FILTER DESIGN MOHAMMAD HANIF BIN MAZLAN

Faculty of Electronics and Computer Engineering

DESIGN OF A MIMO RECTANGULAR DIELECTRIC RESONATOR ANTENNA FOR LTE APPLICATION

DEVELOPMENT OF MICROSTRIP PATCH ARRAY ANTENNA FOR WIRELESS LOCAL AREA NETWORK (WLAN) AZIZAN BIN MAT HASHIM

SPDT SWITCH DESIGN USING SWITCHABLE RESONATOR AT 5GHZ FOR WIRELESS COMMUNICATIONS MOHD HAIDIL BIN ZURAIMI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PATTERN AND FREQUENCY RECONFIGURABLE ANTENNA FOR WIRELESS APPLICATIONS DELPHINE ABIJURU. requirements for the award of the degree of

Design and Development of Planar Antenna for GSM Application ABDULHADI HASAN ALJOUMAH

DUAL BAND DIELECTRIC RESONATOR ANTENNA OPERATES AT 2.4 GHz AND 5.4 GHz SYED FIRDAUS BIN SYED RADZUAN UNIVERSITI TEKNOLOGI MALAYSIA

SYNTHESIS OF MICROWAVE FILTER WITH FINITE DISSIPATIVE LOSS KONG FENG YUAN

A Novel Structure of Multilayer SIW Filter and Patch Antenna

AN ANALYSIS OF VIVALDI RCS ANTENNA AT 6GHZ FOR SATELLITE COMMUNICATION ETTIE ATHIRA BINTI HADLIN

MULTIPLE INPUT MULTIPLE OUTPUT DIELECTRIC RESONATOR ANTENNA FOR LONG TERM EVOLUTION APPLICATIONS SITI FAIRUZ ROSLAN UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN AND ANALYSIS OF WIDEBAND CIRCULARLY POLARIZED DIELECTRIC RESONATOR ANTENNA FOR WIRELESS COMMUNICATION APPLICATIONS

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems

DUAL BAND APERTURE COUPLED MICROSTRIP PATCH ANTENNA USING DIFFERENT APERTURE SHAPE FOR WIRELESS LAN APPLICATION

PERFORMANCE STUDY OF PROXIMITY COUPLED STACKED CONFIGURATION FOR WIDEBAND MICROSTRIP ANTENNA ZULHANI BIN RASIN UNIVERSITI TEKNOLOGI MALAYSIA

TABEL OF CONTENTS. vii CHAPTER TITLE PAGE. TITLE i DECLARATION ii DEDICATION. iii ACKNOWLEDGMENT. iv ABSTRACT. v ABSTRAK vi TABLE OF CONTENTS

PRODUCT DESIGN EVALUATION OF LUCAS HULL DFMA METHOD MOHD NAFIS BIN MOHAIZI

Jurnal Teknologi. Generalized Chebyshev Highpass Filter based on Suspended Stripline Structure (SSS) for Wideband Applications.

NURUL AFIQAH BINTI AZIZ

SYSTEM IDENTIFICATION AND POSITION CONTROL OF PNEUMATIC ACTUATOR USING EMBEDDED SYSTEM TAHA MOHAMMED AHMED SADEQ

PRODUCT DESIGN IMPROVEMENT USING DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA) METHODOLOGY

DESIGN AND DEVELOPMENT OF SUBSTRATE INTEGRATED WAVEGUIDE (SIW) BANDPASS FILTER AHMAD SHAIFUL REDHA BIN RAZAK B

BANDWIDTH ENHANCEMENT OF MICROSTRIP ANTENNA FOR WIRELESS LOCAL AREA NETWORK APPLICATIONS

INTEGRATED ANTENNA WITH NOTCH FILTER FOR MULTIFUNCTION OPERATION IN WIRELESS COMMUNICATION SYSTEM NUR NABILA BINTI MOKTAR

FREQUENCY RECONFIGURABLE ARCHIMEDEAN SPIRAL ANTENNA MASMURNI BINTI ABDUL RAHMAN

ANTENNA ARRAY (DESIGN AT 28 GHz FOR 5G MOBILE NETWORK BASIL JABIR SHANSHOOL. A project submitted in partial fulfilment of the

DUAL BAND RECTYFYING CIRCUIT FOR RF ENERGY SCAVENGING NURASYIDAH BINTI MOHD SALLEH

DUAL BAND ACTIVE MICROSTRIP MONOPOLE ANTENNA FOR WIRELESS LOCAL AREA NETWORK ABDULRAHMAN ABDULLAH AL-MALSI UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF MONOPOLE SENSORS FOR RICE QUALITY CHARACTERIZATION IN MALAYSIA JAMALIAH BINTI SALLEH

STUDY ON THE CHARACTERISTICS OF CAPILLARY PLASMA ANTENNA ARRAY IN RADIO WAVE NOOR FADHILAH BINTI RAMLI

HARMONIC MODELING IN POWER DISTRIBUTION SYSTEM USING TIME SERIES SIMULATION CHE KU FARHANA BINTI CHE KU AMRAN UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN A WIDEBAND LOW-NOISE AMPLIFIER FOR WIRELESS COMMUNICATION USING 0.35-µm CMOS TECHNOLOGY MOHD HAFIZ BIN ABU

HOUMAN OMIDI. A project report submitted in partial fulfilment of the. Master of Engineering (Electrical-Power) Faculty of Electrical Engineering

CONTINUOUS INDIVIDUAL PLOT CURVES TECHNIQUE FOR SIMULTANEOUS TARGETING AND DESIGN OF A MASS EXCHANGE NETWORK YANWARIZAL UNIVERSITI TEKNOLOGI MALAYSIA

OPTIMIZATION OF THE FABRICATION PROCESS PARAMETERS OF AN OPTICAL MODULATOR MOHAMMAD AZWAN SAFWAN BIN HARUN

Signature. Supervisor :.. ~.~H-.~.~0~P..?.j.~H~~~.. ~.~.~ Date :...?./!!./~~ ~

TWO DIMENSIONAL DIRECT CURRENT RESISTIVITY MAPPING FOR SUBSURFACE INVESTIGATION USING COMPUTATIONAL INTELLIGENCE TECHNIQUES

INCORPORATION OF TEXTILE ARTIFICIAL MAGNETIC CONDUCTOR INTO DIPOLE ANTENNA MUHAMMAD AZFAR BIN ABDULLAH UNIVERSITI TEKNOLOGI MALAYSIA

SOFTWARE PROCESS FOR INTEGRATED PATTERN ORIENTED ANALYSIS AND DESIGN (POAD) AND COMPONENT ORIENTED PROGRAMMING (COP) ON EMBEDDED REAL-TIME SYSTEMS

DESIGN SUBSTRATE INTEGRATED WAVEGUIDE SLOT ARRAY ANTENNA AT X-BAND

Dual Frequency Microstrip Antenna Fed by Electromagnetic Coupling For Satellite Application

COMPUTER AIDED APPROACH FOR OCCUPATIONALLY HEALTHIER CHEMICAL PROCESSES ASSESSMENT AND SELECTION SANTHA PANDIAN UNIVERSITI TEKNOLOGI MALAYSIA

THREE-DIMENSIONAL FINITE-DIFFERENCE TIME-DOMAIN SIMULATION OF COAXIAL TRANSMISSION LINE FOR BROADBAND DIELECTRIC CHARACTERIZATION

CIRCULAR POLARIZATION FOLDED REFLECTARRAY ANTENNA FOR 5G APPLICATIONS

THE PRE-SIZING APPROACH OF DC-DC CONVERTER AS THE APPLICATION TO DESIGN A BUCK CONVERTER FOR THE AUTOMOTIVE DOMAIN NOOR SUHADA BINTI AB RAZAK

Universiti Teknikal Malaysia Melaka (UTeM)

MICROSTRIP BANDPASS FILTER DESIGN (COMBLINE) MOHAMAD HAMIZAN BIN TUAH

OPTIMAL HEAT TRANSFER OF HEAT SINK DESIGN BASED ON ELECTRONIC PACKAGE THERMAL DISTRIBUTION USING COMSOL PACKAGE SOFTWARE

STUDY OF CIRCULARLY POLARIZED PATCH ANTENNA FOR WIRELESS LOCAL AREA NETWORK ACCESS POINT APPLICATION

ACTIVE INTEGRATED ANTENNA WITH SIMULTANEOUS TRANSMIT AND RECEIVE QI XUEFENG

DEVELOPMENT OF AN AUTOMATED SELECTION SYSTEM FOR CUTTING TOOLS AND MACHINING PARAMETERS OF MILLING OPERATIONS

iii I hereby declare that this report is the result of my own work except for quotes as cited in the references

: NORHAZILINA BT BAHARI

MITIGATION OF POWER QUALITY PROBLEMS USING ACTIVE POWER FILTER MUNIRAH BINTI ROSLI

HIGH-PERFORMANCE DIGITAL FILTER IN FPGA SITI SUHAILA MOHD YUSOF UNIVERSITI TEKNOLOGI MALAYSIA

IMAGE IMPROVEMENT TECHNIQUE USING FEED FORWARD NEURAL NETWORK

GRAPHICS PROCESSING UNIT BASED PARALLEL COPY MOVE IMAGE FORGERY DETECTION SCHEME AHMAD UWAYS BIN ZULKURNAIN

Recent Advances in Mathematical and Computational Methods

LAPORAN PROJEK SARJANA MUDA

CARBON NANOTUBE FIELD-EFFECT TRANSISTOR FOR A LOW NOISE AMPLIFIER NGU KEK SIANG UNIVERSITI TEKNOLOGI MALAYSIA

2013 IEEE Symposium on Wireless Technology and Applications (ISWTA), September 22-25, 2013, Kuching, Malaysia. Harvesting System

ADAPTIVE CROSS WIGNER-VILLE DISTRIBUTION FOR PARAMETER ESTIMATION OF DIGITALLY MODULATED SIGNALS CHEE YEN MEI

EXPERIMENTAL ANALYSIS OF MACHINING PERFORMANCE BASED ON SELECTED CUTTING PARAMETERS FOR SMART CNC TURNING ENVIRONMENT

DUAL BAND ANTENNA FOR RADIO FREQUENCY IDENTIFICATION APPLICATIONS MURSYIDUL IDZAM SABRAN. requirement for award of the degree of

DESIGN AND DEVELOPMENT OF AN RF POWER HARVESTER OPERATING IN SUBTHRESHOLD FOR BODY AREA NETWORKS TAN PEI CHEE

Nur Athykah binti Basiran

MODELING OF IMAGE PROCESSING ALGORITHMS FOR HARDWARE-SOFTWARE CO-SIMULATION IBRAHIM ISA UNIVERSITI TEKNOLOGI MALAYSIA

MITIGATING INTER-CARRIER INTERFERENCE IN ORTHOGONAL FREQUENCY DIVSION MULTIPLEXING SYSTEM USING SCALED ALPHA PULSE SHAPING TECHNIQUE

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

MODIFIED STEREO VISION METHOD FOR AN UNMANNED GROUND VEHICLE MASOUD SAMADI UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN OF NONLINEAR FREQUENCY SELECTIVE LIMITER NOOR AZAMIAH BINTI MD FAUZI

Australian Journal of Basic and Applied Sciences

UNIVERSITI TEKNOLOGI MALAYSIA

WIRELEES VIBRATION MONITORING SYSTEM (WVMS) WONG YOON KHANG APRIL 2007

Implementation of Integrated Project Delivery (IPD) and Building Information Modelling (BIM) In the Construction Industry.

SPACE VECTOR MODULATION FOR FIVE-PHASE INDUCTION SPEED DRIVE CONTROL NORAZELINA BINTI KAMISMAN. of Bachelor in Electrical Engineering

GENERALIZED CHEBYSHEV MICROWAVE FILTER FOR WIDEBAND APPLICATIONS LIM FENG SHENG

AN ANALYSIS OF HEARTBEAT MONITORING USING MICROWAVE DOPPLER TECHNIQUE. Nadia Binti Baharuddin

SITI NURHAFIZAH BINTI AHMAD SHUHAIMI

Australian Journal of Basic and Applied Sciences. Investigation of Wideband Coplanar Antenna for Energy Scavenging System

TRACKING PERFORMANCE OF A HOT AIR BLOWER SYSTEM USING PID CONTROLLER WITH PSO AND HARMONIC SEARCH ALGORITHM ANDY HENG POH SENG

Signature : Supervisor : Date :...

Introduction: Planar Transmission Lines

Investigation of Meander Slots To Microstrip Patch Patch Antenna

A GRAY-SCALE IMAGE STEGANOGRAPHY TECHNIQUE USING FIBONACCI 12-BITPLANE DECOMPOSITION AND LSB APPROACH SABAH FADHEL HAMOOD

AN OPTICAL WAVELENGTH MEASUREMENT TECHNIQUE USING ERBIUM-DOPED FIBER ATTENUATION NORHAYATI BINTI AFFANDI

MICROWAVE PARAMETERS FOR BITUMEN EMULSION AND ITS APPLICATION IN HIGHWAY ENGINEERING NAJEEB ULLAH KHAN

DESIGN AND SIMULATION OF SILICA-ON- SILICON PUMP/SIGNAL MULTIPLEXER FOR HYBRID PASSIVE-ACTIVE OPTICAL DEVICES ALVIN LAW WEN PIN

WEARABLE ANTENNA FOR 2.4GHz FREQUENCY FOR WLAN APPLICATION NUR RAFEDAH BINTI SATAR

IMPROVING THE DOCUMENTATION OF USER S REQUIREMENTS FOR E-SERVICE SYSTEMS USING SERVICE RESPONSIBILITY TABLE IBRAHIM SALIHU ANKA

SELECTION OF THE INDUSTRILIZED BUILDING MATERIAL SUPPLIER BY ANALYTIC HIERARCHY PROCESS METHOD MOHAMMAD YOUSEF MORAVVEJI

DESIGN AND FABRICATE STORAGE CABINET FOR TURRET PUNCH TOOL MUHAMMAD AFIQ BIN AHMAD MUSTAZA

SILICON NANOWIRE FIELD-EFFECT TRANSISTOR (SINWFET) AND ITS CIRCUIT LEVEL PERFORMANCE SITI NORAZLIN BINTI BAHADOR UNIVERSITI TEKNOLOGI MALAYSIA

PARTICLE SWARM OPTIMIZATION FOR MPPT : SIMULATION AND ANALYSIS NOOR DZULAIKHA BINTI DAUD UNIVERSITI TEKNOLOGI MALAYSIA

Chebyshev Filters for Microwave Frequency Applications A Literature Review Sanjay Mishra 1 Dr. Agya Mishra 2

AHMAD RIDZUAN BIN AB. WAHAB

AFFINE-BASED TIME-SCALE ULTRA WIDEBAND WIRELESS CHANNEL SIMULATOR FOR TIME-VARYING COMMUNICATION ENVIRONMENT NOR ASWANI BINTI HJ MAMAT

Transcription:

Faculty of Electronics and Computer Engineering DESIGN OF INTEGRATED RECTANGULAR SIW FILTER AND MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATIONS Sam Weng Yik MSc. in Electronic Engineering 2014

DESIGN OF INTEGRATED RECTANGULAR SIW FILTER AND MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATIONS SAM WENG YIK A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering Faculty of Electronics and Computer Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

DECLARATION I declare that this thesis entitled Design of integrated Rectangular SIW Filter and Microstrip Patch Antenna for Wireless Communications is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree. Signature :... Name :... Date :...

APPROVAL I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science Electronic Engineering. Signature :... Supervisor Name :... Date :...

ABSTRACT This thesis presents the design and development of an integrated substrate integrated waveguide (SIW) filter and microstrip patch antenna, which utilizes cascaded and multilayered techniques. Integrated method contributes to the reduction of the overall design size in front-end subsystems as well as in manufacturing cost. The first design process was developed using the basic concept of filter with the characteristics of the circuit transformation of lowpass prototype network for filter, antenna and integrated filter and antenna with the sequence procedure as a starting point. The next process involved the designing of Chebyshev bandpass for filter, antenna and integrated filter and antenna at desired frequency based on single- and dual-mode. The second and third design process were developed using planar structure based on SIW technology and patch antenna. The concept of SIW was formulated from a standard conventional rectangular waveguide by a set of design rules. Meanwhile, microstrip patch antenna was designed based on the procedures and techniques in order to integrate with SIW filter. Integrated method using cascaded and multilayer are developed from the combination between SIW filter and patch antenna. Two commercial software programs that were used in the design and development of integrated SIW filter and antenna bandpass filter namely Advanced Design System (ADS) software, and CST Studio Suite software. All designs were simulated, manufactured and measured. The experimental results showed good agreement with the simulated results. The main benefits of the integrated SIW filter and microstrip patch antenna are the reduction of the overall size, ease to fabricate, low in cost and the use of standard printed circuit board process. This new novel of microwave filters is considered suitable and is an alternative solution for 3G, ISM, WLAN and LTE applications without an addition of external common impedance network on the systems. i

ABSTRAK Tesis ini membentangkan reka bentuk dan pembangunan integrasi penapis pandu gelombang berinterasi substrat dan antena tampalan mikrostrip yang menggunakan kaedah lata dan berbilang lapis antara penapis dan antena. Kaedah integrasi dapat menyumbangkan kepada pengurangan saiz keseluruhan reka bentuk dan kos pembuatan dalam bahagian depan subsistem. Proses reka bentuk yang pertama telah dibangunkan dengan menggunakan konsep asas penapis dengan ciri-ciri transformasi litar rangkaian prototaip untuk penapis laluan rendah, antena dan integrasi penapis dan antena dengan mengikut prosedur tertentu sebagai satu titik permulaan. Reka bentuk ini diteruskan dengan lulus jalur untuk penapis Chebyshev, antena dan integrasi penapis dan antenna pada frekuensi yang dikehendaki berdasarkan tunggal- dan dwi-mod. Proses reka bentuk kedua dan ketiga telah dibangunkan dengan menggunakan struktur satah berasaskan teknologi SIW dan tampalan antenna. Konsep SIW digubal dari rumus standard pandu gelombang segi empat tepat konvensional dengan mengikut set peraturan reka bentuk yang telah ditetapkan. Sementara itu, mikrostrip tampalan antenna direka berdasarkan prosedur dan teknik dalam usaha untuk bergabung dengan penapis SIW. Kaedah integrasi menggunakan lata dan berbilang lapis dihasilkan melalui gabungan antara penapis SIW dan antena tampal. Dua program perisian komersial telah digunakan dalam reka bentuk dan pembangunan integrasi SIW penapis dan antena seperti Advanced System Design (ADS) perisian, dan perisian CST Studio Suite. Semua reka bentuk telah disimulasikan, dihasilkan dan diuji untuk membuktikan konsep yang telah direka adalah betul. Keputusan eksperimen menunjukkan persetujuan yang baik dengan keputusan simulasi yang telah dilakukan. Manfaat utama integrasi SIW penapis dan mikrostrip tampalan antenna adalah pengurangam saiz keseluruhan reka bentuk, pemudahan fabrikasi, pengurangan kos dan menggunakan standard proses papan litar yang bercetak. Integrasi ini merupakan sesuatu yang baru dan sesuai digunakan serta menjadi alternatif menyelesaikan untuk aplikasi 3G, ISM, WLAN dan LTE dengan tanpa tambahan galangan di luar rangkaian sistem. ii

ACKNOWLEDGMENT I would like to express my appreciation to my main supervisor Dr. Zahriladha bin Zakaria who had guided me throughout this on my main thesis writing and for his advice that had greatly improved my knowledge on the microwave field. I am also very thankful to my cosupervisor, Mr. Zoinol Abidin bin Abd. Aziz for his guidance, advice and motivation. Without their continued moral support and concern, this thesis would not have been presented here. Besides that, I want to thank my lecturers, specially Mr. Noor Azwan bin Shairi and Mr. Sani Irwan bin Md Salim who have helped and motivated me throughout. Finally, I would like to extend my gratitude to everyone who have been directly and indirectly invovled in the successful completion of this thesis. v

TABLE OF CONTENTS DECLARATION APPROVAL ABSTRACT ABSTRAK ACKNOWLEDGMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF APPENDICIES LIST OF ABBREVIATION LIST OF SYMBOLS LIST OF PUBLICATIONS AWARD PAGE i ii iii iv vii ix xvi xvii xviii xx xxii CHAPTER 1. INTRODUCTION 1 1.0 Background 1 1.1 Original Contribution Presented in this Thesis 4 1.2 Problem Statement 6 1.3 Objectives 6 1.4 Scope 7 1.5 Thesis Organization 7 2. LITERATURE REVIEW 9 2.0 Introduction 9 2.1 Basic Concept of Filter 10 2.2 Lowpass Prototype Network 12 2.3 Lowpass to Bandpass Circuit Transformation 12 2.4 Effects of Losses on Bandpass Filter 15 2.5 Resonant Circuit Theory of Filter 19 2.5.1 Single-Mode Filter 19 2.5.2 Dual-Mode Filter 21 2.6 Resonant Circuit Theory of Antenna 22 2.6.1 Single-Mode Antenna 22 2.6.2 Dual-Mode Antenna 23 2.7 Resonant Circuit Theory of Integrated Filter and Antenna 24 2.7.1 Integrated Filter and Antenna (Single-mode) 24 2.7.2 Integrated Filter and Antenna (Dual-mode) 35 2.8 Substrate Integrated Waveguide (SIW) Filter 27 2.8.1 Introduction 27 2.8.2 Overview of Microwave Filter 27 2.8.3 Recent Development of SIW Filter 28 2.8.4 Fundamentals of Waveguide 32 2.8.5 Waveguide Modes 35 2.8.6 Rectangular Wavegulde Resonator 37 iv

2.8.7 Design Rules of Substrate Integrated Waveguide (SIW) 38 2.9 Design of Antenna 38 2.9.1 Introduction 41 2.9.2 Overview of Microstrip Patch Antenna 41 2.9.3 Review of Microstrip Patch Antenn 42 2.9.4 Basic Concept of Rectangular Microstrip Patch Antenna 44 2.9.5 Transmission Line Model 48 2.10 Design of Integrated Filter and Antenna 45 2.10.1 Introduction 53 2.10.2 Overview of Integrated Microwave Filter and Antenna 54 2.10.3 Review of Integrated Microwave Filter and Antenna 54 2.11 Summary 58 3. METHODOLOGY 60 3.0 Introduction 60 3.1 Flow Chart 61 3.2 Design of Bandpass Filter Based on Circuit Theory 63 3.2.1 Single-mode Bandpass Filter 63 3.2.2 Dual-mode Bandpass Filter 65 3.3 Design of Antenna Based on Circuit Theory 67 3.3.1 Single-mode Antenna 67 3.3.2 Dual-mode Antenna 69 3.4 Design of Integrated Filter and Antenna Based on Circuit Theory 71 3.4.1 Single-mode Integrated Filter and Antenna 71 3.4.2 Dual-mode Integrated Filter and Antenna 73 3.5 Design of the Substrate Integrated Waveguide (SIW) Bandpass Filter 75 3.5.1 Single-mode Rectangular SIW Bandpass Filter 75 3.5.2 Dual-mode Rectangular SIW Bandpass Filter 77 3.6 Design of the Microstrip Patch Antenna 79 3.6.1 Single-mode Rectangular Microstrip Patch Antenna 79 3.6.2 Dual-mode Rectangular Microstrip Patch Antenna 82 3.8 Summary 83 4. RESULTS AND DISCUSSIONS: SIW FILTER AND MICROSTRIP PATCH ANTENNA 84 4.0 Introduction 84 4.1 Results of Bandpass Filter Based on Circuit Theory 84 4.4.1 Single-mode Bandpass Filter 84 4.4.2 Dual-mode Bandpass Filter 85 4.2 Results of Antenna Based on Circuit Theory 87 4.2.1 Single-mode Antenna 87 4.2.2 Dual-mode Antenna 88 4.3 Results of the Substrate Integrated Waveguide (SIW) Bandpass Filter 89 4.3.1 Single-mode SIW Bandpass Filter 89 4.3.2 Manufacturing and Measurement Results 91 4.3.3 Dual-mode SIW Bandpass Filter 94 4.3.4 Manufacturing and Measurement Results 97 4.4 Results of Microstrip Patch Antenna 99 v

4.4.1 Single-mode Rectangular Microstrip Patch Antenna 99 4.4.2 Manufacturing and Measurement Results 102 4.4.3 Dual-mode Rectangular Microstrip Patch Antenna 105 4.4.4 Manufacturing and Measurement Results 108 4.5 Summary 111 5. RESULTS AND DISCUSSIONS: INTEGRATED SIW FILTER AND MICROSTRIP PATCH ANTENNA 112 5.0 Introduction 112 5.1 Results of the Integrated SIW Filter and Antenna Based on Circuit Theory 112 5.1.1 Single-mode Integrated Filter and Antenna 112 5.1.2 Dual-mode Integrated Filter and Antenna 113 5.2 Results of the Integrated SIW Filter and antenna 115 5.2.1 Cascaded (Single-mode) 115 5.2.2 Manufacturing and Measurement Results 119 5.2.3 Cascaded (Dual-mode) 120 5.2.4 Manufacturing and Measurement Results 125 5.2.5 Multilayer (Single-mode) 127 5.2.6 Manufacturing and Measurement Results 133 5.3 Comparison of Results 136 5.4 Summary 137 6. CONCLUSION AND FUTURE WORK 138 6.0 Conclusion 138 6.1 Future Work 139 REFERENCES 141 APPENDICES 153 vi

LIST OF TABLES TABLE TITLE PAGE 2.1 Key literature on microstrip patch antenna 43 3.1 Single-mode bandpass filter specification 63 3.2 Impedance scaling network element values for single-mode bandpass 64 filter 3.3 Dual-mode bandpass filter specification 65 3.4 Impedance scaling network element values for dual-mode bandpass 67 filter 3.5 Single-mode antenna specification 67 3.6 Impedance scaling network element values for single-mode antenna 68 3.7 Dual-mode antenna specification 69 3.8 Impedance scaling network element values for dual-mode antenna 71 3.9 Single-mode integrated filter and antenna specification 71 3.10 Impedance scaling network element values for integrated filter and 73 antenna 3.11 Dual-mode integrated filter and antenna specification 73 3.12 Initial element values of integrated filter and antenna 73 3.13 Impedance scaling network element values for integrated filter and 75 vii

antenna 3.14 FR-4 substrate properties 76 3.15 FR-4 substrate properties 78 3.16 FR-4 substrate properties 79 3.17 FR-4 substrate properties 82 4.1 Geometric dimensions of single-mode rectangular SIW bandpass filter 90 4.2 Geometric dimensions of dual-mode rectangular SIW bandpass filter 95 4.3 Geometric dimensions of single-mode rectangular microstrip patch 101 antenna 4.4 Geometric dimensions of dual-mode microstrip patch antenna 106 5.1 Geometric dimensions of integrated single-mode SIW bandpass filter 118 and patch antenna 5.2 Geometric dimensions of integrated dual-mode SIW bandpass filter 124 and patch antenna 5.3 Geometric dimensions of the multilayer structure 131 5.4 Comparison of simulated and measurement results for single-mode 136 viii

LIST OF FIGURES FIGURE TITLE PAGE 1.1 Typical block diagram of receiving front end of communication 2 system 1.2 Block diagram of the RF front end of wireless communication 3 systems in the base station (Hunter, 2001) 2.1 Filter in ideal condition (a) Lowpass filter response (b) Highpass filter 11 response (c) Bandpass filter response (d) Bandstop filter response 2.2 (a) Lowpass response ωω cc = 1 (b) Bandpass response 14 2.3 Bandpass transformation of (a) an inductor (b) a capacitor 15 2.4 Inductor with finite resistance 16 2.5 Circuit representations of resonators with finite resistances 17 2.6 Insertion losses as a function of different QQ uu values (Hunter, 2001) 18 2.7 Lowpass prototype of single-mode filter 19 2.8 Equivalent circuit of single-mode bandpass filter 20 2.9 Lowpass prototype of dual-mode filter 21 2.10 Equivalent circuit of dual-mode bandpass filter 22 2.11 Lowpass prototype of single-mode antenna 23 2.12 Equivalent circuit of single-mode antenna 23 ix

2.13 Lowpass prototype of dual-mode antenna 23 2.14 Equivalent circuit of dual-mode antenna 24 2.15 Lowpass prototype equivalent circuit of integrated second order 24 filter/antenna 2.16 Equivalent circuit of integrated second order filter/antenna 25 2.17 Lowpass prototype equivalent circuit of dual-mode filter/antenna 26 2.18 Integrated equivalent circuit filter/antenna (dual-mode) 26 2.19 The electromagnetic spectrum (Pozar, 2005) 28 2.20 SIW topology (Deslandes and Wu, 2003) 29 2.21 The triangular cavities structure proposed by Zhang et. al. (2005) 30 2.22 Four second-order filters (Potelon et. al., 2006) 31 2.23 SIW square cavity dual-mode filter (Wang et. al., 2008) 32 2.24 End view of two wire line 33 2.25 Waveguide shapes (Pozar, 2005) 33 2.26 Simple electric fields (capacitor) 34 2.27 Two wire transmission line using a generator 35 2.28 Magnetic fields in a single wire 35 2.29 (a) Half-sine and (b) Full-sine of E-field distribution in a rectangular 36 waveguide 2.30 Half-sine of H-field distribution in a rectangular waveguide 37 2.31 Rectangular waveguide resonator 38 2.32 (a) Rectangular waveguide hollow structure and (b) SIW structure 39 with via-holes in array form 2.33 SIW filter (top view) 40 x

2.34 Microstrip Patch Antenna 44 2.35 Fringing effect fields (E-Field) 45 2.36 Microstrip line feed 46 2.37 Probe feed (a) top view (b) side view 46 2.38 Proximity-coupled multi-layer feed 47 2.39 Aperture-coupled feed 47 2.40 Transmission line model 48 2.41 E-fields distribution for mode tt = 1 49 2.42 Microstrip patch antenna (top view) 53 2.43 Layout structure of the multilayer, multi-technology slotline 55 dipole/chebyshev filter (Nadan et. al., 1998) 2.44 (a) Layout of antenna filter layer (b) layer structure (Tamijani et. al., 56 2002) 2.45 SIW filter-antenna module s topology (Nova et. al., 2011) 57 2.46 Bottom and top view of fabricated filter-antenna (Wu et. al., 2013) 58 3.1 Flow chart of the project 61 3.2 Circuit representation of a single-mode SIW filter 77 3.3 Circuit representation of a dual-mode SIW filter 78 3.4 Circuit representation of a single-mode antenna 81 3.5 Circuit representation of a dual-mode antenna 83 4.1 Simulated response of lowpass prototype (single-mode) 85 4.2 Simulated response of first order Chebyshev bandpass (single-mode) 85 4.3 Simulated response of lowpass prototype (dual-mode) 86 4.4 Simulated response of second order Chebyshev bandpass (dual-mode) 86 xi

4.5 Simulated response of lowpass prototype (single-mode) 87 4.6 Simulated response of first order antenna (single-mode) 87 4.7 Simulated response of lowpass prototype (dual-mode) 88 88 4.8 Simulated response of second order equivalent circuit antenna (dualmode) 4.9 Single-mode rectangular SIW bandpass filter 89 4.10 Effect of ll 1 of single-mode rectangular SIW bandpass filter 90 4.11 Magnitude of E-field of single-mode rectangular SIW bandpass filter 91 4.12 Simulated results of single-mode rectangular SIW bandpass filter 91 4.13 Manufacturing single-mode rectangular SIW bandpass filter 92 4.14 Measured results of single-mode rectangular SIW bandpass filter 93 4.15 Comparison between the simulated and measured response 93 4.16 Dual-mode rectangular SIW bandpass filter 94 4.17 Effect of j of dual-mode rectangular SIW bandpass filter 95 4.18 Magnitude of E-field of dual-mode rectangular SIW bandpass filter 96 4.19 Simulated results of dual-mode rectangular SIW bandpass filter 96 4.20 Manufacturing dual-mode rectangular SIW bandpass filter 98 4.21 Measured results of dual-mode rectangular SIW bandpass filter 98 4.22 Comparison between the simulated and measured response 99 4.23 Single-mode rectangular microstrip patch antenna 100 4.24 Effect of LL aa of single-mode rectangular microstrip patch antenna 100 4.25 Magnitude of E-field of single-mode rectangular microstrip patch 101 antenna 4.26 Simulated results of rectangular microstrip patch antenna 101 xii

4.27 Simulated radiation pattern 102 4.28 Manufacturing single-mode rectangular microstrip patch antenna 103 4.29 Measured results of rectangular single-mode microstrip patch antenna 103 4.30 Comparison between the simulated and measured response 104 4.31 Comparison of simulated and measurement for radiation pattern 104 4.32 Dual-mode rectangular microstrip patch antenna 105 4.33 Effect of a of dual-mode rectangular microstrip patch antenna 106 4.34 Magnitude of E-field of dual-mode rectangular microstrip patch 107 antenna 4.35 Simulated results of dual-mode rectangular microstrip patch antenna 107 4.36 Simulated radiation pattern 108 4.37 Manufacturing dual-mode rectangular microstrip patch antenna 109 4.38 Measured results of dual-mode rectangular microstrip patch antenna 109 4.39 Comparison between the simulated and measured response 107 4.40 Comparison of simulated and measurement for radiation pattern 108 5.1 Simulated response of lowpass prototype (single-mode) 113 5.2 Simulated response of single-mode integrated filter and antenna 113 5.3 Simulated response of lowpass prototype (dual-mode) 114 5.4 Simulated response of dual-mode integrated filter and antenna 114 5.5 Integrated single-mode SIW bandpass filter and patch antenna 115 5.6 Circuit representation of a single-mode integrated SIW filter and 116 antenna 5.7 Effect of ll 3 of integrated single-mode SIW filter and patch antenna 117 5.8 Magnitude of E-field of integrated single-mode SIW filter and patch 117 xiii

antenna 5.9 Simulated results of the integrated single-mode SIW filter and patch 118 antenna 5.10 Manufacturing integrated single-mode SIW filter and patch antenna 119 5.11 Measured results of integrated single-mode SIW filter and patch 120 antenna 5.12 Comparison between the simulated and measured response 120 5.13 Integrated dual-mode SIW bandpass filter and patch antenna 121 5.14 Circuit representation of a dual-mode integrated SIW filter and 122 antenna 5.15 Effect of yy 1 of integrated dual-mode SIW filter and patch antenna 123 5.16 Magnitude of E-field of integrated dual-mode SIW filter and patch 123 antenna at centre frequency 1.878 GHz 5.17 Magnitude of E-field of integrated single-mode SIW filter and patch 123 antenna at centre frequency 2.113 GHz 5.18 Simulated results of integrated dual-mode SIW filter and patch 125 antenna 5.19 Manufacturing integrated dual-mode SIW filter and patch antenna 126 5.20 Measured results of integrated dual-mode SIW filter and patch 126 antenna 5.21 Comparison between the simulated and measured response 127 5.22 Top view of the multilayer structure 128 5.23 Side view of the multilayer structure 128 5.24 Ground plane view with T-slot 128 xiv

5.25 Bottom view of the multilayer structure 129 5.26 Circuit representation of a single-mode integrated SIW filter and 130 antenna 5.27 Effect of h 4 of the multilayer structure 130 5.28 Magnitude of E-field for multilayer (a) top view (b) bottom view 132 5.29 Simulated results of the multilayer structure 132 5.30 Simulated radiation pattern 133 5.31 Manufacturing integrated single-mode SIW filter and patch antenna 134 (from left: bottom and top) 5.32 Manufacturing integrated single-mode SIW filter and patch (ground 134 plane) 5.33 Measured results of multilayer structure 135 5.34 Comparison between the simulated and measured response 135 5.35 Comparison of simulated and measurement for radiation pattern 136 xv

LIST OF APPENDICES APPENDIX TITLE PAGE A Cosine and Sine Integrals 148 B Data Sheet FR-4-86 UV Block 150 C Standard Rectangular Waveguide Data 152 xvi

LIST OF ABBREVIATION 3G - Third Generation EM - Electromagnetic LTE - Long Term Evolution RF - Radio Frequency RX - Recieve SIW - Substrate Integrated Waveguide TE - Transverse Electric TEM - Transverse Electromagnetic TM - Transverse Magnetic TX - Transmit WLAN - Wireless Local Area Network xvii

LIST OF SYMBOLS C - Capacitance L - Inductance R - Resistance ω - Angular frequency ωω cc - Angular cut-off frequency ωω oo - Angular centre frequency K - Impedance inverter α - Bandwidth scaling factor c - Speed of light λ - Wavelength λλ oo - Centre frequency wavelength λλ gg - Centre guide wavelength N - Number of order(s) ff oo - Centre frequency ff cc - Cut-off frequency ff rr - Resonant frequency BW - Bandwidth εε oo - Permittivity of free space xviii

εε rr - Dielectric constant S - Sensitivity h - Substrate thickness xix

LIST OF PUBLICATIONS Journals: Zakaria, Z., Sam, W.Y., Abd Aziz, M.Z.A., Jusoff, K., Othman, M.A., Ahmad, B.H., Mutalib, M.A., and Suhaimi, S., 2013. Hybrid Topology of Substrate Integrated Waveguide (SIW) Filter and Microstrip Patch Antenna for Wireless Communication System. Australian Journal of Basic and Applied Sciences, 7(3), pp. 24-34. (Scopus) Zakaria, Z., Sam, W.Y., Abd Aziz, M.Z.A., and Ismail, M.M, 2013. The Integration Of Rectangular SIW Filter and Microstrip Patch Antenna Based On Cascaded Approach, Procedia Engineering, 53(1), pp. 347-353. (Scopus) Zakaria, Z., Sam, W.Y., Abd Aziz, M.Z.A., Jawad, M.S., and Mohamad Isa, M.S., 2012. Investigation of Integrated Rectangular SIW Filter and Rectangular Microstrip Patch Antenna Based on Circuit Theory Approach, International Journal of Advanced Studies in Computers, Science and Engineering (IJASCSE), 1(4), pp. 46-55. (Google Scholar) xx