Application Note, V1.1, October 2009 EVALPFC2-ICE2PCS W PFC Evaluation Board with CCM PFC controller ICE2PCS01. Power Management & Supply

Similar documents
Application Note, V2.0, March 2006 EVALPFC2-ICE1PCS W PFC Evaluation Board with CCM PFC controller ICE1PCS01. Power Management & Supply

160W PFC Evaluation Board with DCM PFC controller TDA and CoolMOS

EVALPFC-300W-ICE3PCS02/03G

Application Note, V1.0, Nov 2004 ICE3B2565. SMPS Evaluation Board with CoolSET TM ICE3B2565. Power Management & Supply

EVALPFC-300W-IPP60R190P6

Application Note. EVALQS-190W-ICE2QS02G 190W Evaluation Board Based on Quasi-resonant Flyback Converter for LCD TV SMPS. Power Management & Supply

AN-EVALSF3-ICE3B0565J

Power Management & Supply. Design Note. Version 2.3, August 2002 DN-EVALSF2-ICE2B765P-1. CoolSET 80W 24V Design Note for Adapter using ICE2B765P

EVALPFC-300W-ICE3PCS02/03G Revision History: V2.0 Previous Version: 1.0 Maximum switching frequency changed to 100kHz

N e v e r s t o p t h i n k i n g.

AN-EVALSF3-ICE3BS03LJG

ILD2035. MR16 3 W Control Board with ILD2035. Application Note AN214. Industrial and Multimarket. Revision: 1.0 Date:

LD /15/2011. Green-Mode PWM Controller with Frequency Swapping and Integrated Protections. Features. General Description.

DESCRIPTION FEATURES PROTECTION FEATURES APPLICATIONS. RS2320 High Accurate Non-Isolated Buck LED Driver

Application Note AN- EVAL-2QR2280G-20W. 20W5V Evaluation Board with Quasi- Resonant CoolSET ICE2QR2280G. Power Management & Supply

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

Application Note, V1.1, Apr CoolMOS TM. AN-CoolMOS-08 SMPS Topologies Overview. Power Management & Supply. Never stop thinking.

High Accurate non-isolated Buck LED Driver

Reference Design Report for a 21W (42V/0.5A) LED Driver Using SFL900

HF A 27V Synchronous Buck Converter General Description. Features. Applications. Package: TBD

Application Note, V1.2, Aug 2010 AN-EVAL3BR0665JF. 100W 18V SMPS Evaluation Board with CoolSET F3R ICE3BR0665JF. Power Management & Supply

2 8W 1 6 V E v a l u a t i o n B o a r d w i t h Q u a s i - R e s o n a n t C o o l S E T I C E 2 Q R G

AT V,3A Synchronous Buck Converter

AT V Synchronous Buck Converter

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

CoolSET TM Selection Guide

LSP5502 2A Synchronous Step Down DC/DC Converter

RT8465. Constant Voltage High Power Factor PWM Boost Driver Controller for MR16 Application. Features. General Description.

Driving 2W LEDs with ILD4120

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

Power Management & Supply. Application Note. Version 3.0, Oct AN-EVALSF2-ICE2B765P2-3. CoolSET 80W 24V Evaluation Board using ICE2B765P2

CPC9909EB. Hi-Brightness, Off-Line LED Driver Evaluation Board User s Guide INTEGRATED CIRCUITS DIVISION

Application Note, Rev.1.0, November 2010 TLE8366. The Demoboard. Automotive Power

BW7381. Universal High Brightness LED Driver

23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter

HM V 3A 500KHz Synchronous Step-Down Regulator

ZA3020LV 2A Step-Down,PWM,Switch-Mode DC-DC Regulator

D e m o B o a r d U s e r s M a n u a l. Demoboard Rev.1.0, Standard Power

12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B

Green-Mode PWM Controller with Integrated Protections

AND8324/D. 300 W, Wide Mains, PFC Stage Driven by the NCP1654

Power Control ICs EVALLED-TDA4863G-40W. Application Note. Industrial & Multimarket

LD7552B 1/2/2008. Green-Mode PWM Controller with Integrated Protections. General Description. Features. Applications. Typical Application. Rev.

AIC2858 F. 3A 23V Synchronous Step-Down Converter

HM V 2A 500KHz Synchronous Step-Down Regulator

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

PAM2421 EVB User Guide

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

TS19702 High Power Factor Corrector LED Driver

Green-Mode PWM Controller with Hiccup Protection

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter

Application Note ANPS ICE2QS02G. Power Management & Supply. Converter Design Using Quasi-resonant PWM Controller ICE2QS02G

Application Note, V1.0, Sep 2011 AN-EVAL3BR1465JF. 60W 18V SMPS Evaluation Board with CoolSET F3R ICE3BR1465JF. Power Management & Supply

TLE4916-1K. Datasheet. Sense & Control. Low Power Automotive Hall Switch. Rev.1.0,

WD3119 WD3119. High Efficiency, 40V Step-Up White LED Driver. Descriptions. Features. Applications. Order information 3119 FCYW 3119 YYWW

Wide Input Voltage Boost Controller

AND9043/D. An Off-Line, Power Factor Corrected, Buck-Boost Converter for Low Power LED Applications APPLICATION NOTE.

Green-Mode PWM Controller with Hiccup Protection

Boundary Mode Offline LED Driver Using MP4000. Application Note

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

CCM-PFC ICE3PCS02G. Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit

LD7591 3/4/2010. Transition-Mode PFC Controller with Fault Condition Protection. Features. General Description. Applications

CoolSET F3 Latch & Jitter Mode ICE3A1065LJ. 6 th Sept., Beijing. Infineon. Tim Hu. 7Apr06 Page 1. Page 1

HM V, 3.1A Monolithic Step-Down Switching Regulator in TSOT Features. 2 Applications. 3 Description. 4 Typical Application Schematic

Smart Multichannel Switches

Application Note AN-1075

LSP A 23V Synchronous Buck Converter. General Description. Features. Applications. LSP5526 Rev of /8/1.

CPC9909 Design Considerations

LD7536E 5/28/2012. Green-Mode PWM Controller with Frequency Swapping and Integrated Protections. General Description. Features.

LD7536R 05/11/2010. Green-Mode PWM Controller with Frequency Swapping and Integrated Protections. General Description. Features.

Current Mode PWM Controller

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input

JW1767B FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION. Offline Step-down LED Regulator With PFC and High Voltage MOSFET

Single-Stage PFC Buck Current Control LED Driver

AT V 5A Synchronous Buck Converter

SG5841/J FEATURES APPLICATIONS DESCRIPTION TYPICAL APPLICATION. Product Specification. Highly-Integrated Green-Mode PWM Controller

ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications

Features. Applications. 1.2MHz Boost Converter with OVP in Thin SOT-23-6

AN1489 Application note

ADT7350. General Description. Applications. Features. Typical Application Circuit. Aug / Rev. 0.

N386X APPLICATION INFORMATION

Constant Current Switching Regulator for White LED

DT V 400KHz Boost DC-DC Controller FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

PAM2421/ PAM2422/ PAM2423. Pin Assignments. Description NEW PRODUCT. Applications Features. Typical Applications Circuit

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

Green-Mode PWM Controller with Integrated Protections

Preliminary GL8211/11B

30V, 3.1A Monolithic Step-Down Switching Regulator. C5 100nF/25V 5 FB COMP GND 4. Fig. 1 Schematic 60.00%

Green-Mode PWM Controller with Hiccup Protection

CR6853. Novel Low Cost Green-Power PWM Controller With Low EMI Technique

Techcode TD8213. High Efficiency 1.2MHz Step Up Regulator. Features. General Description. Applications. Pin Assignments DATASHEET

UNISONIC TECHNOLOGIES CO., LTD UCC36351 Preliminary CMOS IC

EVHFC0100HS-00A Quasi Resonant Controller

LSP A 27V Synchronous Buck Converter. General Description. Features. Applications. LSP5523 Rev of /4/16.

UNISONIC TECHNOLOGIES CO., LTD UC1103 Preliminary CMOS IC

CONSONANCE. 4A, Standalone Li-ion Battery Charger CN3761. General Descriptions: Features: Pin Assignment: Applications:

Transcription:

Application Note, V1.1, October 2009 EVALPFC2-ICE2PCS01 300W PFC Evaluation Board with CCM PFC controller ICE2PCS01 Power Management & Supply N e v e r s t o p t h i n k i n g.

Edition 2009-10-13 Published by Infineon Technologies Asia Pacific, 168 Kallang Way, 349253 Singapore, Singapore Infineon Technologies AP 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

EVALPFC2-ICE2PCS01 Revision History: 2009-10 V1.0 Previous Version: Page Subjects (major changes since last revision) 9&10 Capacitor CX1 size changed 300W PFC Evaluation Board with CCM PFC controller ICE2PCS01 License to Infineon Technologies Asia Pacific Pte Ltd AN-PS0010 Liu Jianwei Luo Junyang Jeoh Meng Kiat We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: ap-lab.admin@infineon.com 3

Table of Content 1 Content... 5 2 Evaluation Board... 5 3 Technical Specifications... 6 4 Circuit Description... 6 5 Circuit Operation... 6 6 Circuit Diagram... 8 7 PCB Layout Top Layer... 9 8 PCB layout Bottom Layer... 10 9 Component List... 11 10 Boost Choke Layout... 122 11 Test report... 12 11.1 Load test (table and figure)... 12 11.2 Harmonic test according to EN61000-3-2 Class D requirement... 14 11.3 Test Waveforms... 15 12 References:... 16 4

1 Content The evaluation board described here is a 300W power factor correction (PFC) circuit with 85~265VAC universal input and 393VDC fixed output. Boost converter topology is employed in this board. The continuous conduction mode (CCM) PFC controller ICE2PCS01 is employed in this board to achieve the unity power factor. The switching frequency is programmable by external resistor at one pin. There are various protection features incorporated to ensure safe system operation conditions. The device has a unique soft-start function which limits the start up inrush current thus reducing the stress on the boost diode. To improve the efficiency, the third generation CoolMOS is used as the power switch due to its lowest area specific Rdson. High voltage Silicon Carbide (SiC) Schottky diode thinq! is used as PFC boost diode. Because of its ideal reverse recovery behavior, SiC Schottky diode is extremely suitable for high frequency CCM PFC application. 2 Evaluation board 5

3 Technical specifications: Input voltage 85VAC~265VAC Input frequency 50Hz Output voltage and current 393VDC, 0.75A Output power ~ 300W Efficiency >90% at full load Switching frequency 62.5kHz (with R8=76K) 4 Circuit Description Line Input The AC line input side comprises the input fuse F1 as over-current protection. The high frequency current ripple is filtered by R1, L1 and CX1. The choke L2, X2-capacitors CX1 and CX2 and Y1- capacitor CY1 and CY2 are used as radio interference suppressors. RT1 is placed in series to limit inrush current during each power on. Power Stage Boost Type PFC Converter After the bridge rectifier BR1, there is a boost type PFC converter consisting of L3, Q1, D1 and C2. The third generation CoolMOS is used as the power switch Q1. Due to its low Rdson, the small heat sink can fulfill the dissipation requirement. SiC Schottky diode thinq! is used for D1. As SiC Schottky diode does not show a reverse recovery behavior, the stress on the MOSFET will be reduced due to very low current spike during turn on transient. Simultaneously higher reliability of the entire system can be achieved. However, due to the poor pulse current capability of SiC Schottky diode, a standard diode D2 is necessary to bypass the high inrush current during each power on transient. Output capacitor C2 provides energy buffering to reduce the output voltage ripple (100Hz) to the acceptable level. PWM control of Boost Converter The PWM control is realized by 8-Pin CCM PFC IC ICE2PCS01. Unlike the conventional PFC controller, ICE2PCS01 does not need direct sine wave reference signal. The switching frequency is fixed and programmed by R8. There are two control loops in the circuit, voltage loop and current loop. The output voltage is sensed by the voltage divider of R5A, R5B, R6A and R6B and sent to internal error amplifier. The output of error amplifier is used to control current in the inner current loop. The compensation network C4, C5, R7 constitutes the external circuitry of the error amplifier. This circuitry allows the feedback to be matched to various load conditions, thereby providing stable control. In order not to make the response for 100Hz ripple, the voltage loop compensation is implemented with low bandwidth. The inner loop, current control loop, is implemented with average current mode strategy. The instant current is adjusted to be proportional to both of MOSFET off duty D OFF and the error amplifier output voltage of voltage loop. The current is sensed by shunt resistors R2, R2A and R2B and fed into IC through R9. The current sense signal is averaged by an internal operating amplifier and then processed in the PWM generator which drives the gate drive. The averaging is realized by charging and discharging an external capacitor C7. The IC supply is provided by external voltage source and filtered and buffered by C8 and C9. The IC output gate driver is a fast totem pole gate drive. It has an in-built cross conduction current protection and a Zener diode to protect the external transistor switch against undesirable over voltages. The gate drive resistor R4 is selected to limit and gate pulse current and drive MOSFET for fast switching. 5 Circuit Operation Soft Start When Vcc pin is higher than turn-on threshold, typical 11V, PFC is going to start. The unique soft start is integrated. Input current keeps sinusoidal and is increasing gradually until output voltage reaches 6

75% of rating. Because the peak current limit is not activated, the boost diode is not stressed with large diode duty cycle under high current. Enhanced Dynamic Response Due to inherent low bandwidth of PFC dynamic, in case of load jump, regulation circuit can not response fast enough and it will lead to large output voltage overshoot or drop. To solve this problem in PFC application, enhance dynamic response is implemented in the IC. Whenever output voltage exceeds by ±5%, it will bypass the slow compensation operating amplifier and act on the nonlinear gain block to affect the duty cycle directly. The output voltage can be recovered in a short time. Protection Features a. Open loop protection (OLP) / Mains under voltage protection The open loop protection is available for this IC to safe-guard the output. Whenever V SENSE voltage falls below 0.6V, or equivalently V OUT falls below 20% of its rated value, it indicates an open loop condition (i.e. VSENSE pin not connected). In this case, most of the blocks within the IC will be shutdown. It is implemented using a comparator with a threshold of 0.6V. Insufficient input voltage V IN will also trigger this protection. b. Output over-voltage protection Output over-voltage protection is also available by the same integrated blocks of enhanced dynamic response. Whenever V OUT exceeds the rated value by 5%, the over-voltage protection OVP is active. This is implemented by sensing the voltage at pin V SENSE with respect to a reference voltage of 3.15V. A V SENSE voltage higher than 3.15V will immediately reduce the output duty cycle even down to zero, bypassing the normal voltage loop control. This results in a lower input power and the output voltage V OUT is reduced. c. Soft over current control (SOC) and peak current limit When the amplitude of current sense voltage reaches 0.68V, Soft Over Current Control (SOC) is activated. This is a soft control does not directly switch off the gate drive but acts on the internal blocks to result in a reduced PWM duty cycle. The IC also provides a cycle by cycle peak current limitation (PCL). It is active when the voltage at current sense voltage reaches -1.04V. The gate output is immediately off after 300ns blanking time. d. IC supply under voltage lock out When VCC voltage is below the under voltage lockout threshold VCCUVLO, typical 11V, IC is off the gate drive is internally pull low to maintain the off state. The current consumption is down to 200uA only. 7

6 Circuit Diagram 1 2 3 4 D D2 1N5408 D C L F1 5A 85~265VAC VAR1 S10K275 N R1 120ohm L2 L1 40uH CX1 2*3.9mH 0.47u/275V CY1 2.2nF, Y2, 250V Earth RT1 S237/5 CX2 0.47u/275V CY2 2.2nF, Y2, 250V BR1 8A, 400V L3 1.24mH C1 0.1u/630V R2 0.33/1W R2A 0.22/1W R2B 0.22/1W Q1 SPP20N60C3 R3 10k D1 SDP04S60 C2 390V/300W Vo Gnd R5 390k, 1% C 3 R9 220 R4 3.3 R5A 390k, 1% IC? I-Sense Gat e 8 B Vcc GND C9 47u/25V C8 0.1u C7 4.7nF 7 2 Vcc I-Comp Freq 4 R8 76k ICE2PCS01 Vsense GND V-Comp 1 C5 1uF 6 5 R7 33k C4 0.1uF C3 0.1uF R6 10k, 1% R6B 15k,1% B A A 1 2 3 4 8

7 PCB layout top layer 9

8 PCB layout Bottom: 10

9 Component List: Designator Part Type Description Manufacturer / Part No. BR1 8A, 400V Bridge Rectifier Vishay / KBU8G C1 0.1uF/630V Ceramic Cap Epcos / B32652A6104J C2 220uF/450V Electrolytic Cap Epcos / B43304C5227M C3 0.1uF/50V Ceramic Cap Murata / RPER71H104K2K1A03B C4 0.1uF/50V Ceramic Cap Murata / RPER71H104K2K1A03B C5 1uF/50V Ceramic Cap C7 4.7nF/50V Ceramic Cap C8 0.1uF/50V Ceramic Cap Murata / RPER71H104K2K1A03B C9 47uF/25V Electrolytic Cap CX1 0.47uF, X1, 305V Ceramic Cap Epcos / B32922C3474M CX2 0.47uF, X1, 305V Ceramic Cap Epcos / B32922C3474M CY1 2.2nF, Y2, 250V Ceramic Cap Epcos / B81123C1222M000 CY2 2.2nF, Y2, 250V Ceramic Cap Epcos / B81123C1222M000 Connector D1 SDT04S60 Diode D2 1N5408 Diode Vishay / 1N5408 F1 5A Fuse Fuse Holder IC1 ICE2PCS01 Infineon JP1 12.5mm, Ф0.7mm Jumper JP2 20mm, Ф0.7mm Jumper JP3 12mm, Ф1.2mm Jumper JP4 17.5mm, Ф0.7mm Jumper L1* Shorted L2 2*3.9mH CM Choke Epcos / B82725J2602N20 L3 1.24mH Choke Q1 SPP20N60C3 Power MOSFET Infineon Heat Sink TO220 Clip TO247 Clip TO220 Isolation Pad 3mm Screw R2 0.33/1W, 5% Metal Film Resistor R2A 0.22/1W, 5% Metal Film Resistor R2B 0.22/1W, 5% Metal Film Resistor R3 10k/0.25W, 5% Carbon Film Resistor R4 3.3/0.25W, 5% Carbon Film Resistor R5A 390k/0.25W, 1% Carbon Film Resistor R5B 390k/0.25W, 1% Carbon Film Resistor R6A 10k/0.25W, 1% Carbon Film Resistor R6B 15k/0.25W, 1% Carbon Film Resistor R7 33k/0.25W, 5% Carbon Film Resistor R8 75k/0.25W, 1% Carbon Film Resistor R9 220/0.25W, 5% Carbon Film Resistor RT1 S237/5 NTC Thermistor Epcos / B57237S509M VAR1 S10K275 Varistor Epcos / B72210S271K101 11

10 Boost Choke Layout Core: CS468125 toriod Turns: 83 Wire: 1 x Φ1.0mm, AWG19 11 Test report Inductance: L=1.24mH 11.1 Load test (table and figure): Vin (VAC) Pin (W) Iin (A) Vout (V) Iout (A) Pout (W) efficiency PF 320 3.8 393 0.75 294.75 92% 1 211 2.51 393 0.5 196.5 93% 1 165 1.96 393 0.4 157.2 95% 1 124 1.47 393 0.3 117.9 95% 0.99 83 0.99 393 0.2 78.6 95% 0.99 43 0.52 394 0.1 39.4 92% 0.97 31 0.39 394 0.075 29.55 95% 0.95 20.3 0.26 395 0.049 19.355 95% 0.91 12.2 0.17 396 0.029 11.484 94% 0.87 85 4.2 0.07 396 0.01 3.96 94% 0.71 316 2.9 393 0.75 294.75 93% 1 208 1.91 393 0.5 196.5 94% 0.99 163 1.5 393 0.4 157.2 96% 0.99 123 1.13 393 0.3 117.9 96% 0.99 83 0.77 393 0.2 78.6 95% 0.98 42.3 0.4 393 0.1 39.3 93% 0.94 30 0.29 394 0.0718 28.2892 94% 0.89 22 0.22 394 0.0525 20.685 94% 0.86 14.2 0.15 394 0.034 13.396 94% 0.82 110 6.2 0.076 394 0.014 5.516 89% 0.63 307 1.4 394 0.75 295.5 96% 0.99 204 1 394 0.5 197 97% 0.99 161 0.8 394 0.4 157.6 98% 0.97 120 0.63 394 0.3 118.2 99% 0.95 82 0.45 394 0.2 78.8 96% 0.92 41 0.29 394 0.1 39.4 96% 0.83 29.5 0.16 395 0.072 28.44 96% 0.77 21.7 0.133 395 0.053 20.935 96% 0.67 14 0.1 395 0.033 13.035 93% 0.53 220 6 0.093 395 0.014 5.53 92% 0.22 265 305 1.2 394 0.75 295.5 97% 0.99 203 0.79 394 0.5 197 97% 0.98 161 0.63 394 0.4 157.6 98% 0.97 120 0.48 395 0.3 118.5 99% 0.95 81 0.34 395 0.2 79 98% 0.91 41 0.21 395 0.1 39.5 96% 0.73 12

29.5 0.17 395 0.072 28.44 96% 0.64 21.7 0.16 395 0.053 20.935 96% 0.45 13.8 0.15 395 0.033 13.035 94% 0.38 5.83 0.1 395 0.014 5.53 95% 0.15 98.0% 96.0% Efficiency 94.0% 92.0% 90.0% 300W Load 200W Load 150W Load 80W Load 88.0% 85 110 220 265 Input Voltage (V) PF 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 85VAC 110VAC 230VAC 265VAC 0 0 50 100 150 200 250 300 Pout (W) 13

11.2 Harmonic test according to EN61000-3-2 Class D requirement 85VAC, full load (300W output) Iin 85VAC, 9% of full load (28W output) Iin 265VAC, full load (300W output) Iin 14

265VAC, 9% of full load (28W output) Iin 11.3 Waveforms (soft start, load jump, open loop) Soft start, test at 85VAC, Iout=0.2A Iin Vout Vcc Vcomp Load jump test at 85VAC, Iout from 0A to 0.75A Load jump test at 85VAC, Iout from 0.75A to 0A Vgate Vgate Vout Iout Vout Iout 15

Open loop test at 265VAC, Iout=0.1A Vgate Iin Vout Vsense 12 References: 16