Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Similar documents
Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Ch 24. Geometric Optics

Waves & Oscillations

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Waves & Oscillations

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Chapter Ray and Wave Optics

Academic Year: 2017/2018 Term 3 Physics - Grade 10 Revision sheet Chapter 13: section 1,2,3 / Chapter 14: section 1 pages: ( ),( )

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 36. Image Formation

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Astronomical Observing Techniques Lecture 6: Op:cs

Geometrical Optics. Have you ever entered an unfamiliar room in which one wall was covered with a

Study on Imaging Quality of Water Ball Lens

Chapter 36. Image Formation

Physics II. Chapter 23. Spring 2018

Chapter 23. Light Geometric Optics

OPAC 202 Optical Design and Inst.

Performance Factors. Technical Assistance. Fundamental Optics

Chapter 23. Mirrors and Lenses

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Chapter 18 Optical Elements

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optical Design with Zemax

28 Thin Lenses: Ray Tracing

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

25 cm. 60 cm. 50 cm. 40 cm.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Geometric optics & aberrations

Chapter 3 Mirrors. The most common and familiar optical device

Applied Optics. , Physics Department (Room #36-401) , ,

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Chapter 23. Mirrors and Lenses

Converging and Diverging Surfaces. Lenses. Converging Surface

Sequential Ray Tracing. Lecture 2

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Light sources can be natural or artificial (man-made)

Magnification, stops, mirrors More geometric optics

Refraction by Spherical Lenses by

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

REFLECTION THROUGH LENS

The Law of Reflection

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Laboratory 7: Properties of Lenses and Mirrors

Big League Cryogenics and Vacuum The LHC at CERN

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Lab 2 Geometrical Optics

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Physics, Chapter 38: Mirrors and Lenses

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Chapter 2 - Geometric Optics

Basic Optics System OS-8515C

CHAPTER 1 Optical Aberrations

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapter 34: Geometric Optics

Practice Problems (Geometrical Optics)

Name. Light Chapter Summary Cont d. Refraction

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather

Image Formation Fundamentals

General Physics II. Ray Optics

Thin Lenses * OpenStax

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

Optics: Lenses & Mirrors

Lens Design I Seminar 1

always positive for virtual image

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

Chapter 23. Mirrors and Lenses

E X P E R I M E N T 12

CHAPTER 18 REFRACTION & LENSES

Phys 102 Lecture 21 Optical instruments

Chapter 36. Image Formation

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope


Chapter 34 Geometric Optics

C.2 Equations and Graphs of Conic Sections

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Transcription:

Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 1

Introduction to Geometrical Optics Spherical Waves wave equations for dielectric 2 E µɛ c 2 2 E t 2 = 0 spherical wave solution E (r, t) = E 0 r ei(kr ωt) E 0 : polarization A: a constant r: radial distance from center/source of wave mostly part of spherical wave Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 2

Light Sources light source: collection of sources of spherical waves astronomical sources: almost exclusively incoherent lasers, masers: coherent sources spherical wave originating at very large distance can be approximated by plane wave Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 3

Ideal Optics ideal optics: spherical waves from any point in object space are imaged into points in image space corresponding points are called conjugate points focal point: center of converging or diverging spherical wavefront object space and image space are reversible Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 4

From Waves to Rays: General Optical System ideal optical system transforms plane wavefront into spherical, converging wavefront Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 5

From Waves to Rays: Azimuthal Symmetry most optical systems are azimuthally symmetric axis of symmetry is optical axis Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 6

From Waves to Rays: Locally Flat Wavefronts rays are normal to local wave (locations of constant phase) locally wave around rays is assumed to be plane wave Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 7

From Waves to Rays: Rays geomtrical optics works with rays only rays are reflected and refracted according to Fresnel equations phase is neglected incoherent sum rays can carry polarization information Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 8

From Waves to Rays: Finite Object Distance object may also be at finite distance also in astronomy: reimaging within instruments and telescopes Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 9

Geometrical Optics Example: SPEX Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 10

Limitations of Geometrical Optics optical system cannot collect all parts of spherical wavefront diffraction geometrical optics neglects diffraction effects geometrical optics: λ 0 physical optics λ > 0 simplicity of geometrical optics mostly outweighs limitations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 11

Lenses Definitions lens = refracting device, discontinuity in material properties perfect lens for infinite object: makes plane wavefront into spherical wavefront Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 12

Surface Shape of Perfect Lens lens material has index of refraction n o z(r) n + z(r) f = constant n z(r) + r 2 + (f z(r)) 2 = constant solution z(r) is hyperbola with eccentricity e = n > 1 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 13

Paraxial Optics assumption 1: Snell s law for small angles of incidence (sin x x): n φ = φ assumption 2: ray hight h small so that optics curvature can be neglected (plane optics, (cos x 1)) assumption 3: tanφ φ = h/f Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 14

Spherical Lenses if two spherical surfaces have same radius, can fit them together surface error requirement less than λ/10 5cm diameter lens, 500 nm wavelength 1ppm accuracy grinding spherical surfaces is easy most optical surfaces are spherical Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 15

Types of Lenses en.wikipedia.org/wiki/file:lens2.svg Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 16

Planoconvex Lenses Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 17

Positive/Converging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1.svg center of curvature and radii with signs: R 1 > 0, R 2 < 0 center thickness: d with material index of refraction positive focal length f Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 18

Negative/Diverging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1b.svg note different signs of radii: R 1 < 0, R 2 > 0 virtual focal point negative focal length Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 19

General Lens Setup: Real Image commons.wikimedia.org/wiki/file:lens3.svg object distance S 1, object height h 1 image distance S 2, image height h 2 axis through two centers of curvature is optical axis surface point on optical axis is the vertex chief ray through center maintains direction Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 20

General Lens Setup: Virtual Image commons.wikimedia.org/wiki/file:lens3b.svg note object closer than focal length of lens virtual image Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 21

Thin Lens Approximation thin-lens equation: 1 + 1 ( 1 = (n 1) 1 ) S 1 S 2 R 1 R 2 Gaussian lens formula: Finite Imaging 1 S 1 + 1 S 2 = 1 f rarely image point sources, but extended object object and image size are proportional orientation of object and image are inverted (transverse) magnification perpendicular to optical axis: M = h 2 /h 1 = S 2 /S 1 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 22

Thick Lenses www.newport.com/servicesupport/tutorials/default.aspx?id=169 ( ) basic thick lens equation 1 f = (n 1) 1 1 + (n 1)d R1 R2 nr 1 R 2 thin means d << R 1 R 2 focal lengths measured from principal planes distance between vertices and principal planes given by f (n 1)d H 1,2 = R 2,1 n Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 23

Chromatic Aberration 1 due to wavelength dependence of index of refraction higher index in the blue shorter focal length in blue Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 24

Chromatic Aberration 2 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 25

Achromatic Lens combination of 2 lenses, different glass dispersion also less spherical aberration Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 26

Transmission of Transparent Materials Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 27

Mirrors Mirrors vs. Lenses mirrors are completely achromatic reflective over very large wavelength range (UV to radio) can be supported from the back can be segmented wavefront error is twice that of surface, lens is (n-1) times surface only one surface to play with Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 28

Plane Mirrors: Fold Mirrors and Beamsplitters Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 29

Spherical Mirrors easy to manufacture focuses light from center of curvature onto itself focal length is half of curvature tip-tilt misalignment does not matter has no optical axis does not image light from infinity correctly (spherical aberration) Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 30

Parabolic Mirrors want to make flat wavefront into spherical wavefront distance az(r) + z(r)f = const. z(r) = r 2 /2R perfect image of objects at infinity has clear optical axis Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 31

Conic Sections circle and ellipses: cuts angle < cone angle parabola: angle = cone angle hyperbola: cut along axis Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 32

en.wikipedia.org/wiki/conic_constant Conic Constant K r 2 2Rz + (1 + K )z 2 = 0 for z(r = 0) = 0 z = r 2 R 1+ 1 1 (1+K ) r2 R 2 R radius of curvature K = e 2, e eccentricity prolate ellipsoid (K > 0) sphere (K = 0) oblate ellipsoid (0 > K > 1) parabola (K = 1) hyperbola (K < 1) all conics are almost spherical close to origin analytical ray intersections Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 33

Foci of Conic Sections sphere has single focus ellipse has two foci parabola (ellipse with e = 1) has one focus (and another one at infinity) hyperbola (e > 1) has two focal points en.wikipedia.org/wiki/file:eccentricity.svg Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 34

Elliptical Mirrors have two foci at finite distances perfectly reimage one focal point into another Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 35

Hyperbolic Mirrors have a real focus and a virtual focus (behind mirror) perfectly reimage one focal point into another Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical Optics 1 36