High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

Similar documents
Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Advanced Silicon Devices Applications and Technology Trends

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

GaN in Practical Applications

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

Ultra-Low Loss 600V 1200V GaN Power Transistors for

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

GaN Transistors for Efficient Power Conversion

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

SiC Cascodes and its advantages in power electronic applications

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

Demands for High-efficiency Magnetics in GaN Power Electronics

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

GaN on Silicon Technology: Devices and Applications

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

High-Voltage (600 V) GaN Power Devices: Status and Benefits Power Electronics Conference 2017 Munich Airport Hilton, December 05, 2017

GaN based Power Devices. Michael A. Briere. RPI CFES Conference

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

Get Your GaN PhD in Less Than 60 Minutes!

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

Designing High-Efficiency ATX Solutions. Practical Design Considerations & Results from a 255 W Reference Design

GaN Power IC Enable Next Generation Power

GaN Power ICs: Integration Drives Performance

GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles

Wide band gap circuit optimisation and performance comparison

Pitch Pack Microsemi full SiC Power Modules

Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S).

Power Matters Microsemi SiC Products

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

Improving Totem-Pole PFC and On Board Charger performance with next generation components

Driving LEDs with SiC MOSFETs

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs

Features. Order code. Description. Table 1: Device summary Order code Marking Package Packing STL28N60DM2 28N60DM2 PowerFLAT 8x8 HV Tape and reel

The Quest for High Power Density

HCD80R600R 800V N-Channel Super Junction MOSFET

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Power Semiconductors technologies trends for E-Mobility

High Frequency GaN-Based Power Conversion Stages

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66502B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

Designing Reliable and High-Density Power Solutions with GaN

Features. Description. Table 1: Device summary. Order code Marking Package Packing STW75N60M6 75N60M6 TO-247 Tube

A new era in power electronics with Infineon s CoolGaN

provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT80GA60LD40

Power semiconductors technology outlook

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Features. Description. AM15572v1_no_tab. Table 1: Device summary Order code Marking Package Packing STWA48N60DM2 48N60DM2 TO-247 long leads Tube

Features. Description. Table 1: Device summary. Order code Marking Package Packing STL24N60DM2 24N60DM2 PowerFLAT 8x8 HV Tape and reel

HEXFET MOSFET TECHNOLOGY

Silicon Carbide N-Channel Power MOSFET

Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers

D AB Z DETAIL "B" DETAIL "A"

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

Semiconductor Power Electronics Technology

Application Note 0009

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

ThinPAK 8x8. New High Voltage SMD-Package. April 2010 Version 1.0

IRLR8503 IRLR8503 PD-93839C. HEXFET MOSFET for DC-DC Converters Absolute Maximum Ratings. Thermal Resistance Parameter

ALL Switch GaN Power Switch - DAS V22N65A

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

IRFE420 JANTX2N6794U JANTXV2N6794U REF:MIL-PRF-19500/ V, N-CHANNEL

Making Reliable and High-Density GaN Solutions a Reality

HCS90R1K5R 900V N-Channel Super Junction MOSFET

HCS80R850R 800V N-Channel Super Junction MOSFET

SMPS MOSFET. V DSS R DS(on) typ. I D

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Gate Drive Optimisation

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

Gallium nitride technology in server and telecom applications

GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

SURFACE MOUNT (SMD-1) 100V, P-CHANNEL. Absolute Maximum Ratings. Product Summary

Features. Description. Table 1: Device summary Order code Marking Package Packing STW56N65DM2 56N65DM2 TO-247 Tube

Features. Description. Table 1: Device summary Order code Marking Package Packing STW70N60DM2 70N60DM2 TO-247 Tube

GS66506T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Automotive-grade N-channel 400 V, Ω typ., 38 A MDmesh DM2 Power MOSFET in a TO-220 package. Features. Description. Table 1: Device summary

Selection of Primary Side Devices for LLC Resonant Converters

The First Step to Success Selecting the Optimal Topology Brian King

Features. Description. AM15572v1_tab. Table 1: Device summary Order code Marking Package Packing STP18N60DM2 18N60DM2 TO-220 Tube

IRFF420 JANTX2N6794 JANTXV2N6794 REF:MIL-PRF-19500/ V, N-CHANNEL

Features. Description. Table 1: Device summary Order code Marking Package Packing STF24N60DM2 24N60DM2 TO-220FP Tube

IRF9230 JANTXV2N6806

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

APT34N80B2C3G APT34N80LC3G

Transcription:

High voltage GaN cascode switches shift power supply design trends Eric Persson Executive Director, GaN Applications and Marketing September 4, 2014 1

Outline for Today s PSMA PTR Presentation Why do we need GaN? 600V GaN cascode switches Comparison to existing Si technologies Application examples Hard-switched topologies Soft-switched and resonant topologies EMI System value Future roadmap, trends Summary 2

Why GaN for Power Electronics? Today s Silicon Options for 600V Switch: Superjunction FET (Coolmos, MDMesh) Pro: Low Rds(on) per area; reasonable cost Con: Very poor body diode; nonlinear Qoss Typical applications: Power Supplies Traditional Planar FET (FREDFET) Pro: low cost process; performance similar to superjunction Con: large die area for a given Rds(on) Typical applications: Legacy power supplies IGBT (with co-packaged diode) Pro: Very low $/Amp; short-circuit capable Con: High Vce(on); no sync rect; switching loss limits freq. Typical applications: Motor drives, UPS inverters 3

4 Normally Off Cascode Native GaN HEMT (depletion mode) has best performance Performance is compromised to shift threshold positive Cascode has easy gate drive Cascode includes excellent body diode 2-chip solution no more difficult than IGBT D GaN HEMT G SK S Low Voltage Si FET US Patents 8,017,978 and 8,368,120

Performance Optimized Cascode Packaging Two key factors for minimizing losses in hard-switched topology: Minimize GaN Si interconnect inductance Eliminate common-source inductance with Kelvin connection REF: Z. Liu, X. Huang, FC Lee, Q. Li, Investigation of Package Influence on High Voltage Cascode GaN HEMT with Simulation Model, CPES review 2-13-2013, Milpitas, CA 5

GaN: First Generation 600V Cascode Best Superjunction Available Parameter IRGAN 60S002HTR IPP65R150CFD CoolMOS CFDII STB25NM60ND FDMesh II IRFPS35N50L Fast body diode Package 6x8mm PQFN TO-220 TO-220 TO-247 Vdss 600V 650V 600V 500V Rdson typ 25 C 135mΩ 135mΩ ƒ(i D ) 130mΩ ƒ(i D ) 125mΩ Rdson typ 125 C 225mΩ +67% 300mΩ +122% 244mΩ +88% 281mΩ +125% Qg (10V Vgs, 480V Vds) 7.9nC 86nC 80nC 150nC Qrr (100A/µs, 25 C) 49nC 700nC 1,000nC 670nC Qrr (100A/µs, 125 C) 51nC 1,600nC 2,000nC 1,500nC Coss (480V) 108pF 420pF 320pF 320pF Better Rds(on) characteristic in much smaller footprint 10X lower Qg than best superjunction 40X lower Qrr than best superjunction 3-4X lower Coss (nonlinear, depends on measurement method) 6

7 600 V Device Trr Performance Comparison GaN Qrr independent of temperature shunt DUT i S coaxial L v S Switching FET Pulse i D i L + DC Bus

8 Comparing Qoss of GaN vs Superjunction REF: M. Treu, E. Vecino, M. Pippan, O. Häberlen, G. Curatola, G. Deboy, M. Kutschak, U. Kirchner, The role of silicon, silicon carbide and gallium nitride in power electronics, IEEE International Electron Devices Meeting, December, 2012

Volts Company Confidential 9 Nonlinear Qoss Causes Time Delay 500 450 400 3.3X longer charge-up time 350 300 250 200 150 100 Qoss Measurement Circuit 50 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Time (µs)

Stored Energy (µj) 10 Qoss Stored Energy versus Vds 40 35 30 25 20 IPW65R045C7 18.6µJ @ 400V IPW60R045CP 25.7µJ @ 400V 15 10 50mΩ GaN Cascode 17.1µJ @ 400V 5 0 0 100 200 300 400 500 600 Vds (Volts)

Why GaN cascode - Summary Outstanding body diode performance Much lower turn-on (switching) loss Much lower conducted EMI (-45dB measured) Enables many more half-bridge applications Low, linear output capacitance Coss Enables much higher soft-switching frequency Well-behaved dv/dt further mitigates EMI Low gate charge 5-10X lower gate driver power loss Bidirectional conduction (sync rect capable) 11

12 Traditional Boost PFC Topology REF: L. Huber, Y. Jang, M. Jovanovic, Performance Evaluation of Bridgeless PFC Boost Rectifiers, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008

13 Basic Bridgeless Boost PFC Topology Major common-mode EMI problems REF: L. Huber, Y. Jang, M. Jovanovic, Performance Evaluation of Bridgeless PFC Boost Rectifiers, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008

Twin Boost Bridgeless PFC Topology Reduces common-mode EMI but look at all the diodes Can be operated CCM or CrCM/DCM REF: L. Huber, Y. Jang, M. Jovanovic, Performance Evaluation of Bridgeless PFC Boost Rectifiers, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 14

Bidirectional Switch Bridgeless PFC Topology Is it really bridgeless (look at all the diodes)? Low Rds(on) bidirectional switch is challenging REF: L. Huber, Y. Jang, M. Jovanovic, Performance Evaluation of Bridgeless PFC Boost Rectifiers, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 15

16 Synchronous Bridgeless Boost Topology High Frequency Half-Bridge 60Hz Polarity Switch Q1 Q3 AC LINE EMI Filter Q2 Q4 DC Bus

17 Synchronous Bridgeless Boost Demo Board GaN Cascode Switches Driver IC

Synchronous Bridgeless Boost Performance η Output Power (W) 18

Synchronous Bridgeless Boost Summary No diode drops only switch conduction voltage Very high efficiency possible approaching 99% Lower component count than other bridgeless topologies Solves EMI problems common to alternative topologies Topology is enabled by GaN cascode switches Can not be achieved with only superjunction FETs Superjunction FETs have far too large Qrr and Coss 19

20 ZVS Half Bridge Building Block Input Caps Output Caps RF Inductor Gate Driver Q1 GaN Cascode Switches + Vin - Q2 Vout

21 Half-Bridge Voltage and Current @ 3.3MHz +6A +4A +2A 0A -2A Inductor Current 400V 300V 200V 100V Switch Voltage 0V

Efficiency 22 Performance of Half-Bridge Boost Boost Converter Efficiency, No Heatsink, 400V Out 100% 98% High Efficiency Possible by Frequency Control 96% 94% 92% 90% 3.3 MHz 2.5 MHz 88% 86% 84% 82% 80% 0 100 200 300 400 500 Po [W]

High-Frequency ZVS Boost Summary 500 Watts, 2.5MHz, 97% efficiency NOT Possible with Silicon Very small magnetic 18mm toroid inductor No heatsink convection cooled Very low gate drive power 0.72W consumed by gate driver Enables ZVS Boost PFC 23

LLC Resonant DC-DC Power Supply 24

25 LLC GaN vs Superjunction @ 1MHz GaN losses significantly lower that Superjunction I 2 Primary I 2 Secondary Gate Drive GaN 3.84A 2 48.0A 2 0.24W Superjunction 4.93A 2 64.6A 2 1.88W Difference +28.3% +34.6% +685% GaN V ds i centertap IPP65R150CFD2 i prim V gs

26 GaN Switch dv/dt control via Gate Drive Modulation 2A Turn off 2A Turn on 50ns/div Vgs 3.7V/ns Vsw 100ns/div 3.3V/ns Vgs Vsw Some applications, esp motor drives require dv/dt < 5V/ns

Conducted EMI benefits of GaN Test condition: single half-bridge 1.5A phase current 20kHz No EMI filter GaN is up to 45dB improvement over Si GaN IR 20kHz IGBT 20kHz Rg=2Ω 45dB Improvement at 1.5MHz Test data courtesy of Schneider Electronic,Technology & Strategy Department 27

600V, 200A GaN 2-sided cooling package* 28

GaNpowIR Product Roadmap 2013 2014 2015 5x7.65mm LGA 135 mω 70 mω 6x8mm PQFN with 2.7mm creepage 8x9mm QFN VB V+ HV LEVEL SHIFT VS DELAY MATCH 100V, 35 mohm Half Bridge 600V, Cascode Switch COM V- 600V, Cascode Half Bridge with Driver 29

Product Family GaNpowIR Technology Roadmap 600V 70-200 mω Cascode Discretes 100V 35mΩ Half Bridge 600V 25-2000 mω Modules 100-300V 5-40mΩ Cascode GaNpowIR IC FETs and Driver 800-1200V GaNpowIR GaNpowIR System on Chip 2013 2014 2016 2018 30

The Future? Integration IPMs Multiphase Architectures Short-circuit capability 900 1200V GaN VHF Optimized 30MHz+ 31