Photonic crystal lasers in InGaAsP on a SiO 2 /Si substrate and its thermal impedance

Similar documents
InGaAsP photonic band gap crystal membrane microresonators*

Heterogeneous Integration of Silicon and AlGaInAs for a Silicon Evanescent Laser

Vertical External Cavity Surface Emitting Laser

SUPPLEMENTARY INFORMATION

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Silicon-based photonic crystal nanocavity light emitters

Waveguiding in PMMA photonic crystals

Supplementary information for Stretchable photonic crystal cavity with

Cavity QED with quantum dots in semiconductor microcavities

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Optics Communications

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector

Quantum-Well Semiconductor Saturable Absorber Mirror

Improved Output Performance of High-Power VCSELs

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

An integrated recirculating optical buffer

Hybrid vertical-cavity laser integration on silicon

Tunable Color Filters Based on Metal-Insulator-Metal Resonators

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Nonuniform output characteristics of laser diode with wet-etched spot-size converter

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Wavelength switching using multicavity semiconductor laser diodes

Frequency conversion over two-thirds of an octave in silicon nanowaveguides

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

Polarization Control of VCSELs

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

Two bit optical analog-to-digital converter based on photonic crystals

Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers

High-Q Photonic Crystal Microcavities in InAsP/InGaAsP Multi-Quantum-Well Membranes

Optical MEMS pressure sensor based on a mesa-diaphragm structure

Low threshold continuous wave Raman silicon laser

Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing

Investigation of mode coupling in a microdisk resonator for realizing directional emission

Invited Paper. Keywords: Silicon evanescent laser, Silicon photonics, integration, photodetector, semiconductor laser

Improved Output Performance of High-Power VCSELs

Bistability in Bipolar Cascade VCSELs

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

Index. BaF 2 crystal 41 biochemical sensor 7, 316, ,

Department of Microelectronics, Faculty of Electrical Engineering, CTU, Prague Technicka 2, Prague 6, Czech Republic 2

Hybrid Silicon Integration. R. Jones et al.

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

InP-based waveguide photodiodes heterogeneously integrated on silicon-oninsulator for photonic microwave generation

Nano electro-mechanical optoelectronic tunable VCSEL

Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers (VCSEL)

Novel Integrable Semiconductor Laser Diodes

Surface-Emitting Single-Mode Quantum Cascade Lasers

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes

Integrated High Speed VCSELs for Bi-Directional Optical Interconnects

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Ultra-Compact Photonic Crystal Based Water Temperature Sensor

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Design, Simulation & Optimization of 2D Photonic Crystal Power Splitter

Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Optoelectronics ELEC-E3210

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits

Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode

Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate

Silicon photonic devices based on binary blazed gratings

Near/Mid-Infrared Heterogeneous Si Photonics

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

Instruction manual and data sheet ipca h

A continuous-wave Raman silicon laser

All-optical logic based on silicon micro-ring resonators

Integrated into Nanowire Waveguides

Guided resonance reflective phase shifters

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

A thin foil optical strain gage based on silicon-on-insulator microresonators

Vixar High Power Array Technology

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Plane wave excitation by taper array for optical leaky waveguide antenna

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Supporting Information: Plasmonic and Silicon Photonic Waveguides

Continuous-Wave Characteristics of MEMS Atomic Clock VCSELs

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

New Waveguide Fabrication Techniques for Next-generation PLCs

An electrically pumped germanium laser

Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs

High-efficiency, high-speed VCSELs with deep oxidation layers

High-power semiconductor lasers for applications requiring GHz linewidth source

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Transcription:

Photonic crystal lasers in InGaAsP on a SiO 2 /Si substrate and its thermal impedance M. H. Shih, Adam Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O Brien, and P. D. Dapkus Department of Electrical Engineering-Electrophysics University of Southern California, Powell Hall of Engineering, 3737 Watt Way Los Angeles, CA 90089-0271 minhsius@usc.edu Abstract: Two-dimensional photonic crystal defect lasers in InGaAsP membranes directly bonded to a SiO 2 /Si substrate have been demonstrated. Lasing at wavelengths near 1550 nm was obtained with incident threshold pump powers as low as 1.5 mw. Good agreement between experimental data and three-dimensional finite-difference time-domain (FDTD) simulation was achieved. The thermal impedance of this laser is also characterized. 2007 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits. References and links 1. A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia and J. E. Bowers, A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser, IEEE Photon. Technol. Lett. 18, 1143 (2006). 2. M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O'Brien, and P. D. Dapkus, Photonic Photonic Crystal Lasers in InGaAsP on a SiO 2 /Si Substrate, The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan. 3. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer, IEEE J. Quantum Electron. 39, 419 (2003). 4. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O'Brien and P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science, 284, 1819 (1999). 5. P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O Brien, and P. D. Dapkus, Operation of photonic crystal membrane lasers above room temperature, Appl. Phys. Lett. 81, 3311 (2002). 6. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444 (2004). 7. J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O Brien and P.D. Dapkus, Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns, IEEE Photon. Technol. Lett. 17, 4 (2005). 8. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O Brien and P. D. Dapkus, Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities, IEEE Photon. Technol. Lett. 18, 535 (2006). 9. J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm, IEEE Photon. Technol. Lett. 12, 1295 (2000). 10. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, A continuous-wave Raman silicon laser, Nature, 433, 725 (2006). 11. Q. Xu, B. Schmidt, S. Pradhan and M Lipson, Micrometre-scale silicon electro-optic modulator, Nature, 435, 325 (2005). 12. S. J. McNab, N. Moll and Y. A. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides, Opt. Express 11, 2927 (2003). 13. D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad and G. N. Maracas, Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates, Appl. Phys. Lett. 69, 463 (1996). 14. A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker and L. A. D Asaro, A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser, IEEE Photon. Technol. Lett. 18, 1143 (2006). (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 227

1. Introduction There has recently been significant progress in bonding III-V active material onto Si to form lasers [1-3]. Here we demonstrate photonic crystal cavities on silicon on insulator (SOI) system. Most of demonstrations for photonic crystal defect cavities are in suspended membranes [4-6], however this type of laser is not able to operate under continuous wave (CW) conditions because of the lack of efficient heat dissipation. There are only a few photonic crystal cavities on sapphire [7, 8] and AlO x [9] substrates that can be operated under CW pump conditions. Silicon photonics has received a great deal of attention because of its transparency at optical communication wavelengths, 1.3 and 1.5 µm, and compatibility with existing electronic integrated circuits. Compact size chip-scale lasers on silicon or SOI platforms [1-3, 10] might be a key element of a silicon photonic integrated circuit and other integrated elements such as high speed modulators [11] and low-loss waveguides [12] have been demonstrated. In this paper, we discuss our demonstration of photonic crystal laser cavities on a SiO 2 /Si substrate. This work was done with two-dimensional photonic crystal defect cavities formed in InGaAsP membranes bonded directly to a SiO 2 /Si substrate. We also demonstrate tuning of the lasing wavelength by varying the photonic crystal lattice constant. For chip-scale photonic integrated circuits, the thermal properties of the elements are important parameters since high density integration of optical elements requires increasing the thermal dissipation per unit area. By characterizing the shift of the lasing wavelength from our photonic crystal lasers with pumped power, the thermal impedance of this compact light source is evaluated. 2. Device fabrication and characterization Figure 1 shows an illustration of the structure of the demonstrated photonic crystal cavity. The photonic crystal cavities patterned in an InGaAsP layer are on the top of a SiO 2 /Si substrate. The SiO 2 layer has a low index of refraction, approximately 1.46, and a thickness of 1 µm. This is enough to reduce the energy radiated from the cavity into the substrate to a tolerable level. The 240 nm thick InGaAsP epitaxial layers were grown by metalorganic chemical vapor deposition (MOCVD) on InP substrates. These layers contain four compressively strained quantum wells that were designed to support gain at 1.55 µm. The InGaAsP wafer was then bonded directly to a SiO 2 /Si substrate at 500 degrees Celsius in a hydrogen chamber, and the InP substrate was then etched by a selective etching procedure performed with HCl acid. A silicon nitride layer was deposited and spin coated with a 3% polymethylmethacrylate (PMMA) resist on the top of the bonded structure. The photonic crystal cavities were patterned using electron beam lithography. The photonic crystal patterns were then transferred into the InGaAsP layers using a reactive ion and electron cyclotron (ECR) dry etching steps with CF4 and CH 4 /H 2 /Ar chemistries, respectively. These defect photonic crystal lasers were formed in a region in which 37 holes (D 4 ) were missing from a two-dimensional triangular photonic crystal lattice. We label this cavity D 4, as the 37 missing holes corresponds to a hexagon with a radius of 4 holes. The defect region of these cavities is approximately 3.2 µm in diameter. In this study, we fabricated an array of devices which have different photonic crystal lattice constants. Figure 2 shows a scanning electron microscope (SEM) image of a D 4 photonic crystal cavity on a SiO 2 /Si substrate. These laser cavities were optically-pumped at room temperature using an 850 nm diode laser at normal incidence with a 1% duty cycle and an 800 ns pulse width. The pumping spot was focused by a 100x objective lens to a spot about 2.5 µm in diameter. The output power was collected by a multi-mode fiber connected to an optical spectrum analyzer. (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 228

Fig. 1. Illustration of a two-dimensional photonic crystal defect cavity on a SiO 2 /Si substrate. Fig. 2. Scanning electron micrograph (SEM) of a photonic crystal cavity on a SiO 2 /Si substrate from an angled view. The cavity is formed in the region in which 37 holes are missing from the photonic crystal lattice. 3. Lasing data Figure 3 shows the optical spectrum and input power-output power characteristic for a D 4 photonic crystal laser with a lattice constant of 392 nm. The lasing wavelength of the cavity is 1541.7 nm. This device has a 13 db side-mode suppression-ratio under these pulsed pumping conditions. The incident threshold pump power of the cavity is about 1.5 mw and the estimated absorption threshold power is approximately 730 µw. One of the advantages of photonic crystal lasers is their lithographically defined resonant wavelength. Figure 4(a) shows the lasing spectra from cavities with lattice constants of 392, 396, 398 and 400 nm. These four cavities are all lasing in the same mode with a normalized frequency (a/λ) of approximately 0.255. In Fig. 4(b), we plot the lasing wavelength of the photonic crystal D4 cavities versus their lattice constants. The lasing wavelength of the D 4 cavities in this data shifts by approximately 13 nm by increasing the lattice constant by 4 nm. The wavelength tuning rate is about 3.2 nm for a 1 nm variation in lattice constant. (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 229

Intensity (a.u.) 10-10 (a) 10-11 λ=1541.7 nm Output Intensity (a.u.) 1.0 (b) 0.8 0.6 0.4 0.2 1.40 1.45 1.50 1.55 1.60 Wavelength (μm) 0.0 0 1 2 3 4 5 6 7 Incident Power (mw) Fig. 3. (a)the lasing spectrum of a D4 photonic crystal cavity on a SiO 2 /Si substrate. The lasing wavelength is 1541.7 nm. (b)the incident power versus the output power (L-L) curve for this cavity. The threshold power is about 1.5 mw. Intensity (a.u.) -10 10 a=398 nma=400nm a=396 nm a=392 nm 10-11 (a) 1.52 1.54 1.56 1.58 Wavelength (μm) Lasing Wavelength (nm) (b) 1580 Slope ~ 3.2 nm/nm 1560 1540 1520 392 394 396 398 400 Lattice Constant (nm) Fig. 4. (a)the lasing spectra of four D4 photonic crystal cavities on a SiO 2 /Si substrate with lattice constants of 392, 396, 398 and 400 nm. (b)the plot for lasing wavelength versus lattice constants of the D4 cavities. The grey line is from a linear fitting for the data. 4. Comparison of experiment results and 3-D model To better understand the lasing modes of the D 4 photonic crystal cavity on a SiO 2 /Si substrate, a three-dimensional (3-D) finite-difference time-domain (FDTD) method was used to simulate this cavity. Figure 5 shows the calculated quality factors (Q) of the resonant modes versus normalized frequency. Superimposed on this data is an experimentally obtained lasing spectrum. We do not expect to obtain resonance modes which have Q values over 10,000 from the D 4 cavity on a SiO 2 /Si substrate since the index contrast of core layer and cladding (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 230

layers is reduced compared to a suspended membrane cavity with air as the lower cladding layer. In fact, there are only a few modes with Q over 1,000 in our simulation results. The two highest Q modes within the simulated region are labeled A and B in the spectrum. This lasing spectrum in Fig. 5 shows lasing at mode A. Good agreement between the measured lasing spectrum and the calculated Q spectrum was obtained not only for lasing in mode A, but also at other high Q resonance modes like mode B. There is approximately a 1% difference between the experimental resonance wavelengths and the theoretically predicted wavelengths. We attributed this small shift to imperfections of the fabrication and a slight inaccuracy in the indices of materials used in the 3-D FDTD simulation. It is also worth noting that the lasers operated at mode A instead of mode B even through mode B is expected to have a higher Q value. This occurred because the gain profile of the InGaAsP quantum wells from fabricated cavities was better aligned to mode A. Mode B, which is more than 45 nm away from the gain peak of the quantum wells had much less gain due to this spectral mismatch. 1.40 1.45 1.50 1.55 1.60 10 4 10 0 Calculated Q 10 3 B A 10-1 10-2 Intensity (a.u.) 1.40 1.45 1.50 1.55 1.60 1.65 Wavelength (μm) 10-3 Fig. 5. Comparison of the measured spectrum and the modeled spectrum. The blue line is a lasing spectrum from a D4 photonic crystal laser on a SiO 2 /Si substrate, and the grey spectrum is the calculated resonance wavelengths with Q values for this cavity. 5. Thermal impedance To characterize the thermal impedance of these cavities, we monitored the shift of the lasing wavelength with changing pumping power. Figure 6 shows the lasing wavelength of a photonic crystal laser versus the incident optical pumping power. The rate at which the lasing wavelength shifts with increasing pump power, Δλ is approximately 0.55 nm/mw. The ΔP thermal impedance of this bonded photonic crystal cavity can be determined by the following equation [13] 1 ΔT Δλ ΔT (1) = = R Th ΔP ΔP Δλ where R is the thermal resistance, Δ T is the temperature change, Δ P is the absorbed Th power from optical pumping, and Δ λ is the lasing wavelength shift of the device. The lasing wavelength shift due to temperature changes, Δλ, is about 0.05 nm/k [5]. After substituting ΔT these two values into equation (1), we obtained a thermal impedance of this photonic crystal (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 231

laser that is approximately 11 K/mW. This value for photonic crystal lasers is larger than values reported for vertical-cavity surface-emitting lasers (VCSELs), which about 1 K/mW [13, 14]. We also obtained a thermal impedance value of this D 4 cavity on a sapphire substrate of approximately 2.6 K/mW. We attribute this lower value to the fact that the sapphire substrate has no oxide layer between the InGaAsP membrane and the high thermal conductivity substrate. 1545 Lasing Wavelength (nm) 1544 1543 1542 1541 0.55 nm/mw 1540 4 5 6 7 8 Incident Power (mw) Fig. 6. The lasing wavelength of a D4 photonic crystal laser on a SiO 2 /Si substrate versus the optical pumping power. The slope is 0.55 nm/mw for this cavity. 6. Summary In summary, two-dimensional D 4 photonic crystal defect lasers have been demonstrated in InGaAsP membranes bonded to a SiO 2 /Si substrate. The lasing wavelength is around 1.55 µm and the incident lasing threshold pump power is about 1.5 mw. The lasing wavelength can be fine-tuned by varying the lattice constant of the photonic crystals. The thermal impedance of this D 4 cavity is also evaluated. Acknowledgment This study is based on research supported by the Defense Advanced Research Projects Agency (DARPA) under contract No. F49620-02-1-0403 and by the National Science Foundation under grant ECS-0094020. Computation for the work described in this paper was, in part, supported by the University of Southern California Center for High Performance Computing and Communications. (C) 2007 OSA 8 January 2007 / Vol. 15, No. 1 / OPTICS EXPRESS 232