Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation

Similar documents
Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Athermal laser design

Wavelength tracking with thermally controlled silicon resonators

Optics Communications

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

A thin foil optical strain gage based on silicon-on-insulator microresonators

1 Introduction. Research article

Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous fieldof-view

Figure 1 Basic waveguide structure

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

GHz-bandwidth optical filters based on highorder silicon ring resonators

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

Athermal and flat-topped silicon MachZehnder filters

Loss Reduction in Silicon Nanophotonic Waveguide Micro-bends Through Etch Profile Improvement

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

Department of Microelectronics, Faculty of Electrical Engineering, CTU, Prague Technicka 2, Prague 6, Czech Republic 2

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Low-loss Si 3 N 4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

- no emitters/amplifiers available. - complex process - no CMOS-compatible

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

LASER &PHOTONICS REVIEWS

Compact silicon microring resonators with ultralow propagation loss in the C band

Design of athermal arrayed waveguide grating using silica/polymer hybrid materials

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Monolithic, Athermal Optical A/D Filter

Fully integrated hybrid silicon two dimensional beam scanner

Subwavelength grating filtering devices

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Ultra-Low-Loss Athermal AWG Module with a Large Number of Channels

Silicon Photonic Device Based on Bragg Grating Waveguide

Photonic Integrated Circuits for Coherent Lidar

All-optical logic based on silicon micro-ring resonators

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

An integrated recirculating optical buffer

Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultrasmall modal volumes

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Monolithic integration of erbium-doped amplifiers with silicon waveguides

PERFORMANCE ENHANCEMENT OF OPTICAL MICRORING RESONATOR USING TAGUCHI METHOD EXPERIMENTAL DESIGN

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium

Demonstration of tunable optical delay lines based on apodized grating waveguides

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

A tunable Si CMOS photonic multiplexer/de-multiplexer

New Waveguide Fabrication Techniques for Next-generation PLCs

Plane wave excitation by taper array for optical leaky waveguide antenna

Demonstration of Silicon-on-insulator midinfrared spectrometers operating at 3.8μm

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Optomechanical coupling in photonic crystal supported nanomechanical waveguides

Heinrich-Hertz-Institut Berlin

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

Large Scale Silicon Photonic MEMS Switch

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

Ultralinear heterogeneously integrated ring-assisted Mach Zehnder interferometer modulator on silicon

Defect mediated detection of wavelengths around 1550 nm in a ring resonant structure

InP-based waveguide photodiodes heterogeneously integrated on silicon-oninsulator for photonic microwave generation

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION

50-Gb/s silicon optical modulator with travelingwave

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Frequency conversion over two-thirds of an octave in silicon nanowaveguides

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

Silicon nitride based TriPleX Photonic Integrated Circuits for sensing applications

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

Si Nano-Photonics Innovate Next Generation Network Systems and LSI Technologies

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Heterogeneous Integration of Silicon and AlGaInAs for a Silicon Evanescent Laser

Microring-resonator-based sensor measuring both the concentration and temperature of a solution

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

Design and realization of a two-stage microring ladder filter in silicon-on-insulator

UC Santa Barbara UC Santa Barbara Previously Published Works

Tuning of Silicon-On-Insulator Ring Resonators with Liquid Crystal Cladding using the Longitudinal Field Component

Supporting Information: Plasmonic and Silicon Photonic Waveguides

Silicon-On-Insulator based guided wave optical clock distribution

Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency

Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Contents Silicon Photonic Wire Waveguides: Fundamentals and Applications

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

High confinement, high yield Si 3 N 4 waveguides for nonlinear optical applications

Transcription:

Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation Shaoqi Feng, 1 Kuanping Shang, 1 Jock T. Bovington, 2 Rui Wu, 2 Binbin Guan, 1 Kwang-Ting Cheng, 2 John E. Bowers, 2 and S. J. Ben Yoo 1,* 1 Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA 2 Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA *sbyoo@ucdavis.edu Abstract: We investigate the athermal characteristics of silicon waveguides clad with TiO 2 designed for 1.3 µm wavelength operation. Using CMOScompatible fabrication processes, we realize and experimentally demonstrate silicon photonic ring resonators with resonant wavelengths that vary by less than 6 pm/ C at 1.3 µm. The measured ring resonance wavelengths across the 20-50 C temperature range show nearly complete cancellation of the first-order thermo-optical effects and exhibit secondorder thermo-optical effects expected from the combination of TiO 2 and Si. 2015 Optical Society of America OCIS codes: (160.3130) Integrated optics materials; (230.7380) Waveguides, channeled; (160.6840) Thermo-optical materials; (130.3120) Integrated optics devices; (230.5750) Resonators. References and links 1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Silicon microring resonators, Laser Photonics Rev. 6(1), 47 73 (2012). 2. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, Silicon photonics: from a microresonator perspective, Laser Photonics Rev. 6(2), 145 177 (2012). 3. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, Integrated thermal stabilization of a microring modulator, Opt. Express 21(12), 14342 14350 (2013). 4. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, Bit-error-rate monitoring for active wavelength control of resonant modulators, IEEE Micro 33(1), 42 52 (2013). 5. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications, IEEE J. Sel. Top. Quantum Electron. 20(4), 136 149 (2014). 6. B. Guha, B. B. C. Kyotoku, and M. Lipson, CMOS-compatible athermal silicon microring resonators, Opt. Express 18(4), 3487 3493 (2010). 7. B. Guha, K. Preston, and M. Lipson, Athermal silicon microring electro-optic modulator, Opt. Lett. 37(12), 2253 2255 (2012). 8. L. Zhou, K. Okamoto, and S. J. B. Yoo, Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding, IEEE Photonics Technol. Lett. 21(17), 1175 1177 (2009). 9. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides, Opt. Express 17(17), 14627 14633 (2009). 10. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, Athermal operation of silicon waveguides: spectral, second order and footprint dependencies, Opt. Express 18(17), 17631 17639 (2010). 11. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, CMOScompatible, athermal silicon ring modulators clad with titanium dioxide, Opt. Express 21(12), 13958 13968 (2013). 12. K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides, in Conference on Lasers and Electro- Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5. 13. B. Guha, J. Cardenas, and M. Lipson, Athermal silicon microring resonators with titanium oxide cladding, Opt. Express 21(22), 26557 26563 (2013). 14. J. Bovington, R. Wu, K.-T. Cheng, and J. E. Bowers, Thermal stress implications in athermal TiO2 waveguides on a silicon substrate, Opt. Express 22(1), 661 666 (2014). 15. V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, A soft electronic band and the negative thermooptic effect in strontium titanate, New J. Phys. 11(8), 083024 (2009). 16. H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, 1310nm silicon evanescent laser, Opt. Express 15(18), 11466 11471 (2007). (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25653

17. B. J. Frey, D. B. Leviton, and T. J. Madison, Temperature-dependent refractive index of silicon and germanium, Proc. SPIE 6273, 62732J (2006). 1. Introduction Photonic integration brings various functionalities from multiple chips into a single chip while greatly reducing the number of optical interfaces, optical packages, and thermo-electric coolers (TECs) associated with the multiple discrete chips. Among many photonic integration platforms including GaAs, InP, silica, and other material platforms, silicon photonics has rapidly emerged as a viable and attractive integration platform [1,2] due to the availability of high-quality oxides that enable low-loss and compact waveguides while exploiting widely available CMOS fabrication facilities. However, practical deployment of silicon photonics exploiting multi-wavelength parallelism is seriously suffering from its strong temperature dependent characteristics. Silicon has a relatively large thermo-optical coefficient (TOC) of 1.84 10 4 / C, which is more than an order of magnitude greater than that of silica. As a result, typical silicon photonic devices suffer from ~0.1 nm/ C wavelength dependence with temperature variations, and they require optical packages with TECs for practical deployment. Since athermal silica photonic integrated circuits are already widely deployed in communication networks in simple packages without TECs, the cost advantages and reliability of silicon photonics suffer from their strong temperature dependence. There has been in large, three main methods to overcome this challenge. The first method has been to introduce integrated heaters onto the silicon photonic devices to actively monitor and control the temperature using feedback control circuits, but this adds complexity and additional power consumption [3 5]. The second method has been to integrate a ring resonator with a Mach-Zehnder interferometer which compensates the thermal dependence of the ring [6,7], but this solution increases the total footprint and typically shows significant wavelength dependence. The third method has been to introduce an upper cladding made of a material with negative TOC to compensate for the positive TOC of silicon. Early demonstrations have utilized polymers with negative TOC as an uppercladding to realize athermal silicon photonics [8 10]. Recently, CMOS-compatible fabrication process involving titanium dioxide (TiO 2 ) has been demonstrated and investigated [11 14] for operation in the 1.550 nm wavelength range. TiO 2 has a relatively strong negative TOC of approximately - 1 10 4 / C ~- 2 10 4 / C around 1550 nm due to presence of a soft electronic band [15] and is already adopted in CMOS processes due to superior reliability. On the other hand, athermal operation of silicon photonic devices in the 1310 nm wavelength range is very important because semiconductor lasers have higher T 0 values and optical fibers have lower dispersion at this range compared with the 1550 nm wavelength range [16]. In this paper, we investigate athermal operation of silicon ring resonators overclad with TiO 2 cladding in the 1310 nm wavelength range. The CMOS compatible fabrication led to TiO 2 -clad silicon ring resonators that showed near complete cancelation of the first order thermo-optical dependence and exhibited residual second order thermo-optical effects in the 1310 nm wavelength range. 2. Design of athermal Si-TiO 2 waveguides An athermal silicon photonic waveguide consists of silicon core, buried oxide (BOX) undercladding and TiO 2 overcladding. Figure 1(a) shows the schematic cross-section of the athermal waveguide. The equivalent thermo-optic coefficient ( silicon waveguide (Si-TiO 2 ) can be expressed as dn eff ) of the TiO 2-overclad dnsio dn 2 TiO2 dn d n d d n dn dn eff k k k k k Si nk k k Si SiO 2 TiO2 k k k (1) (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25654

where n eff is the effective index of the waveguide, Γ k is the confinement factor of the k-th constituent part including the core, over-clad, and under-clad materials, T is the temperature, dnk and is the thermo-optical coefficient of the k-th constituent material. The approximation d in the Eq. (1) is valid to first order in because d n k depends on k indirectly. We will verify this assumption later in this paper. The athermal condition of a Si-TiO 2 waveguide dn eff requires = 0. To first order, we can design the waveguide geometry to satisfy this athermal condition. In addition, the magnetron sputtering condition affects the density of the amorphous TiO 2 over-cladding, which also affects the result of the athermal condition. Figure dn eff 1(b) shows the calculated at 1310 nm for three refractive index values of TiO 2 as a function of the waveguide core width. The TOC values of Si, SiO 2 and TiO 2 used in the simulation are 1.8 10 4, 1 10 5 and 2 10 4 / C, respectively [11]. For the measured TiO 2 refractive index of 2.4, the waveguide core width is chosen to be 220nm for athermal operation at 1310 nm wavelength. Fig. 1. (a) A cross-sectional schematic of athermal Si-TiO 2 waveguide. (b) Calculated dn eff/ as a function of the waveguide width for different refractive index values of TiO 2 cladding for 1310 nm operation. 3. Device fabrication Figure 2 illustrates the fabrication process. The device fabrication utilized a 150mm siliconon-insulator (SOI) wafer with 220nm thick top silicon and 3µm thick buried oxide layers. The top silicon layer is thinned down to 200nm by thermal oxidation. A silicon nitride hard mask of 30nm is deposited by low-pressure chemical vapor deposition (LPCVD). The ring resonator structures are patterned with 248nm projection lithography followed by reactive ion etching (RIE) with CF 4 for nitride and HBr for silicon. Then the ring waveguide structures are thermally oxidized with the hard mask still on top in order to smooth the sidewalls and to reduce the waveguide width below the lithography resolution of 250 nm dimension. The oxide and hard mask are then stripped in hydrogen fluoride and hot phosphoric acid, respectively. Figure 3 shows the scanning electronic microscopy (SEM) images of the fabricated device before TiO 2 cladding deposition. The ring resonator has a radius of 25 µm and a gap spacing of 550nm between ring and straight waveguides. The waveguide core has a width of 200nm and a slab thickness of 30nm. At the two end points of the coupling waveguides at the facet are inverse tapers with tip widths of 200nm to facilitate low-loss optical coupling. (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25655

Fig. 2. Fabrication process steps: (a) Initial SOI wafer. (b) SiN hard mask deposition. (c) Waveguide layer patterning. (d) Thermal oxidation to reduce waveguide width. (e) SiN and thermal SiO 2 strip. (f) SiO 2 layer deposition. (g) Trench opening for TiO 2 cladding. (h) Deep etch for waveguide edge coupler. (i) TiO 2 cladding deposition. The patterned devices are then deposited with 1µm thick SiO 2 by LPCVD. The trench for TiO 2 cladding is opened by CF 4 RIE etching followed by wet etching. The waveguide facet is deep reactive-ion etched (DRIE) by 100µm to accommodate fiber edge coupling. Finally TiO 2 cladding of 1.3 µm thickness is deposited by magnetron-sputtering for athermal operation. The relatively thick (1.3 µm) TiO 2 cladding was chosen to suppress optical scattering from the air-tio 2 interface, and the optimal sputtering condition of 360W RF power and 12% oxygen content [11] was used to realize low loss TiO 2 cladding. Fig. 3. Waveguide geometries. (a) Top-view SEM image of a ring resonator before TiO 2 cladding deposition; (b) Ring-to-bus waveguide coupling region; (c) Cross-sectional SEM image of a waveguide before TiO 2 cladding deposition; (d) Top-view SEM image of an inverse taper. 4. Device characterization Transmission spectra measurements utilize a tunable laser and a photodiode with a device in the interferometer of the optical vector network analyzer (OVNA). The OVNA interferometer utilizes a pair of single-mode lensed fiber couplers with 2.5µm diameter spot sizes (1/e 2 ) to interface with the inverse tapers of the Si-TiO 2 waveguide at input and output facets to launch light into and to collect light from the athermal Si-TiO 2 ring resonator. The silicon photonic (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25656

chip containing the Si-TiO 2 ring resonators is mounted on a stage with a thermo-electric cooler (TEC) in order to control the device temperature with better than 0.1 C accuracy. We measured the transmission spectra of the Si-TiO 2 ring resonators as well as control devices (Si-SiO 2 ring resonators) overclad with SiO 2 instead of TiO 2 prepared on the same silicon photonic wafer. Figure 4 shows the measured transmission spectra of the two types of devices: Si-SiO 2 ring resonators and Si-TiO 2 ring resonators. The device with SiO 2 cladding shows a significant resonant wavelength redshift of 0.86 nm over 15 C variations. The resonance extinction ratio also changes when temperature increases, which may result from the temperature-induced change of coupling coefficient between ring and bus waveguides. The device with TiO 2 cladding shows less than 0.1 nm over the same temperature range, which is below the full width at the half maximum (FWHM) linewidth of 0.25 nm for the resonator. We extract the propagation losses of the waveguides by fitting the transmission spectra of the ring resonators. The propagation losses of 200nm waveguide core width with SiO 2 and TiO 2 cladding are 7 db/cm and 20 db/cm, respectively. Thus the extra loss for TiO 2 cladding as compared to SiO 2 cladding is 13 db/cm, which is comparable to other existing results in 1550nm wavelength range [11,13]. Fig. 4. (a) (b) Measured transmission spectra at various temperature of the devices with (a) SiO 2 and (b) TiO 2 over cladding. (c) Resonance wavelength λ r as a function of temperature for the devices of 200nm width with SiO 2 and TiO 2 cladding. Figure 4(c) shows the measured resonance wavelength λ r as a function of temperature for the devices of 200nm waveguide core width with SiO 2 and TiO 2 cladding. The curve-fit parameter to this measured data shows a wavelength shift of 50 pm/ C for the ring resonator with SiO 2 cladding. The curve-fit parameter to the data obtained for the ring resonator with TiO 2 cladding shows nearly complete cancellation to first order (< 6 pm/ C) while exhibiting the second order dependence at 0.8 pm/ C 2 centered at the design temperature of 35 C. The net result was less than 0.2 nm variation in the 20-50 C temperature range. In order to explain the quadratic dependency of wavelength upon temperature, secondorder material TOCs as well as the confinement factor dependence on the first order material TOCs have to be taken into consideration. Material TOC can be expressed as: dn / T (2) where β is the first-order thermo-optical coefficient and γ is the second-order thermo-optical coefficient. The resonance wavelength λ r of a ring resonator can be expressed as: m 2 n (, T) R( T) (3) r eff r where m is the mode order. Hence its thermal dependency has the form: (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25657

d n r eff r dr dn r eff dn r eff neff sub ngr ng ng (4) where n g is the group index and sub is the thermal expansion coefficient of the silicon substrate which dominates the expansion of the path length. dneff / can be expressed as a linear superposition of TOCs of constituent materials: dneff d knk d k d nk nk k k dnk / k k k T k k k k (5) Here, is the confinement factor of each constituent part. Again, we assume that the k d / induced second-order effect is negligible and proceed with the approximation in Eq. (5) similarly as in Eq. (1). Plug Eq. (4) into Eq. (3) and we can get d r / as a first-order polynomial function of temperature T which can explain the quadratic relationship between wavelength and temperature. The TOC of silicon at 1310 nm is reported 4 7 5 as1.834 10 4.887 10 T [17], where T is in unit of C. The 1 10 / C and SiO 2 is assumed to be 0. The TOC of TiO 2 is calculated to be SiO 2 4 6 3.07 10 4.45 10 T based on fitting the measurement data. Our simulation for the waveguide with a core width of 200nm and TiO 2 overcladding 2 2 5 2 indicates that the d / induced second-order coefficient d / 2.3 10 nm / o r C, which qualitatively agrees with the result in [10]. This second-order coefficient is much smaller than the one observed in our measurements (8 10 4 nm/ C 2 ), which verifies the approximation of neglecting d / in Eqs. (1) and (5). The temperature-dependent wavelength shift can be varied at different spectral ranges. We measured the transmission spectra from 1270 nm to 1340 nm over the 20-50 C temperature range. Figures 5(a)-5(c) show the measured resonance wavelength shift as a function of temperature at various spectral ranges. We extracted the slope of temperature-dependent wavelength shift dλ r / at T = 35 C. Figure 5(d) shows the dλ r / as a function of wavelength. At 1270nm wavelength, resonance redshifts when temperate increases and dλ r / is ~8pm/ C. At 1310nm wavelength, resonance wavelength first blueshifts and then redshifts as temperature rises, and dλ r / at T = 35 C is close to zero. At 1340nm wavelength, resonance wavelength blueshifts as temperature rises and dλ r / at T = 35 C is approximately 8pm/ C. For a fixed waveguide geometry, when the wavelength becomes longer, mode confinement increases in TiO 2 cladding, which contributes to the resonance blueshift and athermalization. (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25658

Fig. 5. (a) (c) Measured (black circle) and quadratically fitted (red line) resonance wavelength shift as a function of temperature. The device with a waveguide width of 200nm is measured at various spectral ranges around (a) 1270nm, (b) 1310nm and (c) 1340nm. (d) Temperature-dependent wavelength shift dλ r/ at T = 35 C as a function of wavelength. Black square: extracted dλ r/ from the measurement result. Red line: linear fitted dλ r/ at T = 35 C as a function of wavelength. The temperature-dependent wavelength shift is also varied for different waveguide core widths. For a wavelength division multiplexing (WDM) application, the athermal operation of silicon ring resonators at different wavelengths can be achieved by appropriately designing the waveguide core width. Figure 6 shows the measured transmission spectra at various temperatures of the ring resonators with different core widths. The 200nm and 220nm wide devices achieve athermal operation at around 1315nm and 1336nm, respectively. 5. Conclusions Fig. 6. (a) Measured transmission spectra at various temperature of the devices with 200nm and 220nm widths. (b) Measured resonance wavelength λ r as a function of temperature for the devices with 200nm and 220nm widths. We demonstrate an athermal silicon ring resonator clad with TiO 2 cladding and measure temperature-dependent resonant wavelength shifts less than 6 pm/ C, exhibiting second order effects near 1310 nm. In order to athermalize silicon photonic devices over a wide temperature range, the waveguide geometries, first and second order TOC values of the materials, and operating wavelengths have to be carefully considered. In particular, the second order effects of TOC of TiO 2 need to be included in the design and operation near the athermal condition. (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25659

Acknowledgment The devices were fabricated by the authors using the facilities in Marvell Nanofabrication Laboratory, University of California, Berkeley and Center for Nano and Micro Manufacturing, University of California, Davis. This work was supported in part by Intel University Research Office Project Scalable, Athermal, Low Power, High Bandwidth Silicon Photonic Technologies. The authors would like to thank Dr. Hai-Feng Liu and Dr. Mario Paniccia of Intel Corporation for their encouragements. (C) 2015 OSA 5 Oct 2015 Vol. 23, No. 20 DOI:10.1364/OE.23.025653 OPTICS EXPRESS 25660