ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

Similar documents
FLEXURAL TORSIONAL GUIDED WAVE PIPE INSPECTION

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

Inspection of pipe networks containing bends using long range guided waves

Ultrasonic Guided Waves for NDT and SHM

A Simulation Study of Attenuation Factors in a Gas Pipeline Guided Wave Testing

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Long Range Ultrasonic Testing - Case Studies

Sensitivity analysis of guided wave characters for transducer array optimisation on pipeline inspections

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes

Ultrasonic Guided Wave Testing of Cylindrical Bars

Multiple crack detection of pipes using PZT-based guided waves

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

ENHANCEMENT OF SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT) BY ADVANCED SIGNAL PROCESSING

HEALTH MONITORING OF ROCK BOLTS USING ULTRASONIC GUIDED WAVES

Guided Wave Travel Time Tomography for Bends

THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES

VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH

Hybrid Active Focusing with Adaptive Dispersion for Higher Defect Sensitivity in Guided Wave Inspection of Cylindrical Structures

APPLICATIONS OF GUIDED WAVE PROPAGATION ON WAVEGUIDES WITH IRREGULAR CROSS-SECTION. Zheng Fan

Testing of Buried Pipelines Using Guided Waves

REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany

Simulation of ultrasonic guided wave inspection in CIVA software platform

Guided Wave in Engineering Structures Using Non-Contact Electromagnetic Acoustic Transducers A Numerical Approach for the Technique Optimisation.

Professor Emeritus, University of Tokyo, Tokyo, Japan Phone: ;

USE OF MICROWAVES FOR THE DETECTION OF CORROSION UNDER INSULATION

Fig. 1 Feeder pipes in the pressurized heavy water reactor.

Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection

Reference wavelets used for deconvolution of ultrasonic time-of-flight diffraction (ToFD) signals

CIRCULAR PHASED ARRAY PROBES FOR INSPECTION OF SUPERPHOENIX STEAM GENERATOR TUBES

Change in Time-of-Flight of Longitudinal (axisymmetric) wave modes due to Lamination in Steel pipes

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD)

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

Developments in Ultrasonic Phased Array Inspection III

Guided Wave Inspection of Supported Pipe Locations Using Electromagnetic Acoustic Transducers

IMPROVEMENT OF DETECTION OF SMALL DEFECTS LOCATED NEAR OR FAR FROM WELDS OF MAGNETIC STEAM GENERATOR TUBES USING REMOTE FIELD EDDY CURRENT

NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT. D. E. Chimenti Center of Nondestructive Evaluation Iowa State University Ames, Iowa, USA

Leaky Guided Ultrasonic Waves in NDT

18th World Conference on Non-destructive Testing, April 2012, Durban, South Africa

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

Use of Lamb Waves High Modes in Weld Testing

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA

Development of Under-Sodium Inspection Technique Using Ultrasonic Waveguide Sensor. FR13 4 ~ 7 Mar Paris, France

Assessment of lamination defect near the inner surface based on quasi-symmetric circumferential Lamb waves

Analysis on Acoustic Attenuation by Periodic Array Structure EH KWEE DOE 1, WIN PA PA MYO 2

Multi Level Temperature Measurement Using a single 90 bend waveguide

NDT 2010 Conference Topics

Long Range Guided Wave Monitoring of Rail Track

Pipe Testing Using Guided Waves

NDI Techniques Supporting Steel Pipe Products

Ultrasonic Guided Wave Applications

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

Finite Element Modeling and Simulation of Ultrasonic Guided Wave Propagation using Frequency Response Analysis

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

Modelling III ABSTRACT

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

A NEW APPROACH FOR THE ANALYSIS OF IMPACT-ECHO DATA

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate

Excitation and reception of pure shear horizontal waves by

Basic functions of the universal flaw detector GEKKO

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

Hydrate plug localization and characterization using guided waves

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

Hardware Development of Reflection Mode Ultrasonic Tomography System for Monitoring Flaws on Pipeline

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

Study on Propagation Characteristics of Ultrasonic Guided Wave for EMAT Sensor

THE EXTRACTION METHOD FOR DISPERSION CURVES FROM SPECTROGRAMS USING HOUGH TRANSFORM

S. GURESH 4 JAN 2017 S. JOHNSON 4 JAN 2017

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY

ACCURACY IMPROVEMENT ON NON-INVASIVE ULTRASONIC-DOPPLER FLOW MEASUREMENT BY UTILZING SHEAR WAVES IN METAL PIPE

Advanced Ultrasonic Imaging for Automotive Spot Weld Quality Testing

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS

Fault detection in small diameter pipes using ultrasonic guided wave technology

Reduction of Dispersive Wave Modes in Guided Wave Testing using Split-Spectrum Processing

RECENT ADVANCEMENTS IN THE APPLICATION OF EMATS TO NDE

Mode Dispersion Curves

Table 1 The wheel-set security system of China high-speed railway

NB/T Translated English of Chinese Standard: NB/T

Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements

Guided Wave Testing - Maximizing Buried Pipe Corrosion Knowledge from each Excavation

ULTRASONIC DEFECT DETECTION IN BILLET USING TIME- OF-FLIGHT OF BOTTOM ECHO

BINDT Telford. Guided Wave Testing and Monitoring Over Long and Short Ranges

FEASIBILITY OF THICKNESS MAPPING USING ULTRASONIC GUIDED WAVES. Pierre Belanger

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod

A New Guide Wave Inspection System Using Three Polarized Transverse Wave EMATs without Any Couplant

DISBOND DETECTION AND CHARACTERIZATION USING HORIZONT ALL Y

Laser Vibrometer Measurement of Guided Wave Modes in Rail Track. Sensor Science and Technology, CSIR Material Science and Manufacturing,

A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves.

Finite element analysis of circular cross sections subjected to combined loading

Rayleigh Wave Interaction and Mode Conversion in a Delamination

The Simulation for Ultrasonic Testing Based on Frequency-Phase Coded Excitation

Available online at ScienceDirect. Physics Procedia 70 (2015 )

Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves 1

Ultrasonic Guided Waves in Structural Health Monitoring Joseph L. Rose

Transcription:

ULTRASONI GUIDED WAVE FOUSING BEYOND WELDS IN A PIPELINE Li Zhang, Wei Luo, Joseph L. Rose Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 1682 ABSTRAT. Ultrasonic guided wave inspection techniques are well-known for the inability to scan a long range axial distance of a pipe from a single transducer position. A phased array focusing technique was developed to improve the ultrasonic guided wave inspection results by concentrating the energy onto a defect. Focusing can increase the energy impinging onto the defects, reduce false alarm ratio, locate the defects, and enhance the propagation distance of the guided waves. An ultrasonic system with n (n>1) individual excitation channels is required to achieve phased array focusing. When phased array focusing was carried out, time delays and amplitude factors were applied to control the input signals for each excitation channel. Different from the time delays for bulk wave linear array focusing, the time delays and amplitude factors for guided wave array focusing are non-linear functions of the focal distance, the pipe size, excitation conditions, and the active frequency. A challenge of this technique is to focus beyond welds, defects, or other obstructions. The influence of axisymmetric welds is investigated with 3D FEM simulations and an experimental example. The theoretical analysis and experiments shows that although welds usually decrease the penetration energy, a limited number of welds rarely affects the phased array focal location. Keywords: guided waves, focusing, weld, pipe, ultrasonics, phased arrays PAS: 43.6.Fg, 43.58.Ta, 43.2.Ye, 44.5.+e. INTRODUTION Recently, ultrasonic guided waves are widely used in pipeline inspection. The guided waves have the property that they can travel a long distance with minimal attenuation and therefore offer the potential of testing large areas from a single point using a pulse-echo transducer bracelet wrapped around a pipe. In order to improve the inspection potential of the guided waves, a phased array focusing technique was developed by Li and Rose [1]. By applying time delays and amplitude factors to a multi-channel transducer array, the ultrasonic energy can be focused at a predetermined spot. The input time delays and amplitude factors depend on the excitation conditions, frequency, and the properties of the pipe. The analytical calculations of these input parameters are based on the research of Gazis [2] and Ditri and Rose [3]. The phased array focusing technique has shown that it can enhance the inspection potential, reduce the false alarm ratio, and increase the working distance of guided waves [4]. However, analytical simulations of phased array focusing are achieved by assuming that the target pipe involves an axisymmetric geometry and elastic isotropic materials. Since many pipes have non-axisymmetric branches, elbows, viscoelastic coatings or 877

anisotropic welds, it is important to investigate the phased array focusing potential for these pipes. In this paper, the numerical three-dimension finite element method (FEM) simulation and experimental verifications are carried out to study focusing beyond several welds in a pipe. ALULATIONS OF THE FOUSING PARAMETERS Guided waves in tubular structures include two major types: 1) longitudinal modes and 2) torsional modes. There are usually several mode groups existing at a particular frequency. Each group involves infinite non-axisymmetric modes (also known as flexural modes) and one axisymmetric mode [5]. L(m,n)/T(m,n) notation is employed to indicate a guided wave mode. The n is the order number of a mode group and the m is the order of an individual mode. When m=, L(m,n) or T(m,n) implies an axisymmetric mode; when m>, it represents a non-axisymmetric mode. In a reference of cylindrical coordinates, Gazis [2] described the particle velocity field of guided waves in pipes as follows: mn m v = R () r Θ ( mθ ) e r r r mn i( ωt k z) mn i( ωt k z) mn m v = R ( r) Θ ( mθ ) e (m =,1,2, ; n = 1,2,3, ) θ θ θ mn m v = R ( r) Θ ( mθ ) e z z z i( ωt kmnz) (1) mn ω where k = is the wave number of the mth circumferential order of the nth mode cmn group; cmn and ω are the velocity and angular frequency; t is the time; R mn α (r) and m sinusoidal functions Θ α ( m θ ) (α = r, θ, z) represents the radial and circumferential velocity components in the r, θ, z directions. By applying a partial longitudinal excitation condition: ˆ T n r p1( θ ) p2 ( z) er, =, z > L, or z L, θ α, r = b θ > α, or r r n+1 (2) or a shear horizontal excitation condition: Tˆ n θ p1( θ) p2( z) eθ, z L, θ α, r = b =, z > L, or θ > α, (3) Li and Rose [6] and Sun et al. [7] obtained the amplitude function A mn + (z) ( z L ) for the mn mth mode in the nth longitudinal or torsional mode group. By utilizing A + as the weight function of each wave mode in a group, the circumferential displacement distributions (known as angular profiles) of a guided wave group at a certain axial position of a pipe can be calculated. For a multi-channel guided wave generation system, if every channel has the same excitation conditions as equation (2) or (3), the focused angular profile function G at a particular distance is obtained by the following formula: 878

G = A H (4) where the complex function A is a unknown discrete weight function; is the convolution operator; H is the discrete angular profile function generated by one single excitation element. In the case of focusing, the G is 1 at the focal spot. onsequently, the complex discrete weight function A can be calculated as: 1 1 A = 1 H = FFT (1/ H ) (5) 1 1 where and FFT denote deconvolution and the inverse fast Fourier transform operator. The input phase delay φ i and the amplitude factor i for the ith excitation channel are the phase and amplitude of the corresponding weight function A i. Hence, the time delays for each channel input are: FINITE ELEMENT SIMULATIONS t = φ / 2πf (6) i i The behaviors of the ultrasonic waves are strongly influenced by the highly oriented austenitic welds, so the analytical calculation for elastic isotropic materials is no longer practical [8]. Therefore, a commercial FEM software, ABAQUS, was used to simulate the guided wave propagation in a welded pipe. The pipe welds are assumed to be of 316L industrial austenitic stainless steel. The schematic cross section perpendicular to the welding direction can be seen in Figure 1. The width of the weld at the outer surface of a pipe is about one half inch; the weld width at the inner surface is approximately a quarter inch. These welds are reasonably considered as transversely isotropic media, which becomes isotropic in the θ-z plane. The material properties are presented by hassignole et al [9], as shown in equations (7)-(8). The Hooke s Law for the weld can be illustrated as follows: [ ] = 1111 1122 1133 1122 2222 2233 1133 2233 3333 2323 3131 = GPa, = 16GPa (8) 2233 1 1212 3131 = 3131 = = GPa, = 233GPa 1122 1133 139 2222 3333 = = GPa, = ( ) / 2 65GPa 1111 194 2323 3333 2233 = (7) Figure 2 shows that a 35kHz T(m,1) guided wave group was focused at 114 from the transducer array. The wave guides are 12 scheduled 4s steel pipes (Outer diameter = 12.75 ; wall thickness =.375.). The input time delays and amplitude factors are calculated by utilizing equations (5) and (6). Applying these time delays and amplitude 879

factors to control the input signals for the excitation channels forces the ultrasonic energy to be focused at the right position. Figure 2(a) demonstrates the energy focal spot at z = 114 in a 12 steel pipe that has no weld. Figure 2(b) and 2(c) show that the ultrasonic energy was correctly focused at the same position, after the guided waves propagated beyond one or two welds. According to the numerical simulations, the absolute value of the torsional-torsional reflection coefficient at a 316L industrial austenitic stainless steel weld was: R =. 8. The angular profiles at the focal position (z = 114 ) are illustrated in Figure 3. Figure 3(a) shows a normalized focused angular profile obtained by employing analytical calculations for an elastic isotropic pipe. Figure 3(b) shows the same angular profile that was calculated by the 3-D FEM method. The black dashed lines show where the energy dropped 6dB from the focal point. By comparing Figure 3(a) and 3(b), one can see that the FEM simulations matched the analytical calculations quite well. Figure 3(c) and 3(d) are the focused angular profiles when the energy was focused beyond one or two welds. When focusing beyond several austenitic transversely isotropic welds, the guided waves still achieved great focal results, almost the same focused angular profiles as before a weld..5 e r e z e θ.25 FIGURE 1. Scheme of the 316L industrial austenitic stainless steel welds in a pipe. Focal spot 114 (a) Focal spot Reflection Signals Focal spot (b) s Reflection Signals (c) FIGURE 2. 3D FEM simulations of the T(m,1) mode group focusing at z=114 on the top of a 12 scheduled 4s steel pipe. The frequency is 35kHz. There are three different pipes: (a) a 12 scheduled 4s pipe without weld, (b) a 12 scheduled 4s pipe with a weld at z=66, and (c) a 12 scheduled 4s pipe with two welds at z=36 and z=66. 88

6dB off 75 75 (a) 6dB off (b) 75 75 (c) FIGURE 3. Focused angular profiles of the 35kHz T(m,1) mode group at z=114 in a 12 scheduled 4s steel pipe. The angular profiles are: (a) analytical calculation results for a pipe without a weld, (b) FEM simulation results for a pipe without a weld, (c) FEM simulation results for a pipe with a weld at z=66, and (c) FEM simulation results for a pipe with two welds at z=36 and z=66. EXPERIMENTAL VERIFIATION In order to verify the FEM simulation results, a 12 schedule 4s steel pipe was examined at the Battelle Institute in Ohio. The pipeline test facility employed a commercial multi-channel low frequency guided wave generation system, Teletest. The pipe contained deliberately machined defects, a calibration groove and an austenitic stainless steel weld, as seen in Figure 4. In these experiments, a new drilled round bottom hole destructive experiment was monitored by ultrasonic guided wave inspection with torsional guided waves as the hole was increased in depth (Figure 4). The inspections were carried out with the hole at four different sizes: 1) depth =.13, diameter =.78, and SA.37%; 2) depth =.225, diameter =.78, and SA.64%; and 3) depth =.28, diameter =.78, and SA.8%. The inspection results by applying axisymmetric excitations and the phased array focusing technique are shown in Figures 5 and 6. Although the defect was not found by the axisymmetrically loaded waves, as can be seen in Figure 5, the focusing technique made the hole detectable when its SA was.64%. These experiment results showed that the ultrasonic energy was indeed focused at the defect location. Hence, focusing beyond a weld can be easily controlled by applying the input time delays and amplitude factors obtained by the traditional analytical calculations. In addition, these experiments proved that the focusing technique could enhance detection potential of the guided waves. Usually, over the low frequency range 2kHz ~ 12kHz, the smallest size defect that could be definitely detected by utilizing axisymmetric excitations was 3% ~ 9%. By the employing the focusing technique, the smallest detectable size can be reduced to 1% ~ 3%, or even smaller. (d) 881

º Q1 Q2 9º Teletest system Q3 18º Q4 27º 1.3% SA Defects and 2.6% SA Defects Target hole Groove 5.5 ft 4. ft FIGURE 4. Scheme of the experiment setup for low-frequency focusing beyond a weld and 2 small defects in a 12 schedule 4s pipe..8 ft (a) Depth of the hole is.13 ; diameter =.78 ; SA =~.37% (b) Depth of the hole is.225 ; diameter =.78 ; SA =~.64% (c) Depth of the hole is.28 ; diameter =.78 ; SA =~.8% FIGURE 5. Axisymmetric inspection results by using the 35kHz T(m,1) group to detect a growing hole with different sizes. The dashed line shows the start of the hole, which is located at 114 from the transducers. No clearly visible echo from the hole was found. 882

(a) Depth of the hole is.13 ; diameter =.78 ; SA =~.37% (b) Depth of the hole is.225 ; diameter =.78 ; SA =~.64% (c) Depth of the hole is.28 ; diameter =.78 ; SA =~.8% FIGURE 6. By focusing the 35kHz T(m,1) group at the growing hole, the inspection results were significantly improved. The dashed line shows the start of the hole, which is located at 114 from the transducers. ONLUDING REMARKS The potential of guided wave focusing beyond anisotropic welds in pipelines was studied. Phased array focusing in pipes was successfully simulated by using a 3D FEM. In addition, experiments were carried out to verify the numerical calculations. Both the numerical simulations and the experiments showed that focusing beyond several austenitic transversely isotropic welds was feasible. The input parameters for focusing in an isotropic pipe obtained by analytical computations are still practical to achieve focusing in a tubular elastic isotropic structure with several transversely isotropic welds. REFERENES 1. Li, J. and Rose, J.L., Angular-Profiles Tuning of Guided Waves in Hollow ylinders Using a ircumferential Phased Array, IEEE Trans. Ultrason., Ferroelect., Freq. ontr., Vol. 49(12), pp.172-1729, 22. 2. Gazis, D.., Three-dimensional investigation of the propagation of waves in hollow circular cylinders, I. Analytical foundation, J.Acoust.Soc.Am., Vol. 31(5), pp. 568-573, 1959. 883

3. Ditri, J.J. and Rose, J.L., Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions, J. Appl.Phys., Vol. 72(7), pp. 2589-2597, 1992. 4. Z. Sun, J.L. Rose, W.J. Song and T. Hayashi, Non-axisymmetric Wave Focusing in Pipe Inspection, Proceedings of QNDE, Vol. 22, pp.244-249, 22. 5. Rose, J.L., Ultrasonic Waves in Solid Media, ambridge University Press, 1999. 6. Sun, Z., Zhang, L., Gavigan, B.J., Hayashi, T., and Rose, J.L., "Ultrasonic flexural torsional guided wave pipe inspection potential", ASME Proceedings of Pressure Vessel and Piping Division onference, PVP- 456, pp. 29-34, 23. 7. Li, J. and Rose, J.L., Excitation and Propagation of Non-axisymmetric guided waves in a Hollow ylinder, J.Acoust.Soc.Am., Vol. 19(2), 457-464, 21. 8. Allen, A.J. et al, Use of Neutron Diffraction Texture Measurements to Establish a Model for alculation of Ultrasonic Velocities in Highly Oriented Austenitic Materials, J. Appl.Phys., Vol. 54(2), pp. 555-56, 1983. 9. hassignole, B. et al, Ultrasonic Propagation in Austenitic Stainless Steel s- Approximate Model and Numerical Methods Results and omparison with Experiments, Proceedings of QNDE, Vol. 19, pp.153-16, 2. 884