Timber Rivet Connections Design Process for a Hanger Connection

Similar documents
Connection Philosophy. p NDS Chapter-by-chapter description Changes from previous editions Examples. Part 1: Member Design Webinar.

2002 ADDENDUM to the 1997 NDS and PRIOR EDITIONS

Changes in the 2001 NDS for Wood Construction

Connection Design Examples

4) Verify that the size of the supporting member can accommodate the connector s specified fasteners.

ADDENDUM (February 2014) 2012 NDS Changes John Buddy Showalter, P.E., Bradford K. Douglas, P.E., Philip Line, P.E., and Peter Mazikins, P.Eng.

Continuing Education. Michelle Kam-Biron, S.E. Wood Products Council WoodWorks!

APA Performance Rated Rim Boards

ICC-ES Evaluation Report

Design Nailed and Wood Screwed Connections with Spreadsheet. Course Content

Design of Bolted Connections per the 2015 NDS

National Design Specification for Wood Construction. Copyright Materials. Learning Objectives

Dowel connections in laminated strand lumber

Connection Solutions for Wood-frame Structures. Copyright Materials. Learning Objectives

ESR-2648 Reissued May 1, 2012 This report is subject to renewal June 1, 2013.

The Wood Products Council is a Registered Provider with. . Credit(s) earned on completion of this program will be

THE ENGINEERED WOOD ASSOCIATION

Originally Issued: 06/28/2012 Revised: 06/21/2017 Valid Through: 06/30/ Design

SDWH TIMBER-HEX Screw

Load Tables, Technical Data and Installation Instructions

Simplified analysis of timber rivet connections

LP SolidStart Laminated Strand Lumber (LSL) and Laminated Veneer Lumber (LVL) Louisiana-Pacific Corporation Revised July 21, 2017

MAT105: Floor Framing

nineteen Wood Construction 1 and design APPLIED ARCHITECTURAL STRUCTURES: DR. ANNE NICHOLS FALL 2016 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

Collins Engineers Palmetto Islands County Park Boardwalk Repairs 03/28/2014 SECTION ROUGH CARPENTRY

Nailed Structural-Use Panel and Lumber Beams

Glulam Connection Details

ICC-ES Evaluation Report Reissued March 1, 2011 This report is subject to renewal in two years.

ROOF-CEILING CONSTRUCTION

Korean standards of visual grading and establishing allowable properties of softwood structural lumber

ICC-ES Evaluation Report Reissued June 1, 2010 This report is subject to re-examination in one year.

3.1 General Provisions

Investigations on the Effectiveness of Self-tapping Screws in Reinforcing Bolted Timber Connections

PART II ENGINEERED BASIS OF RIDGE AND EAVE VENT DETAILS

WITHDRAWAL AND LATERAL STRENGTH OF THREADED NAILS

Wood Connections. Presented by: Karyn Beebe, P.E.

LP SolidStart Laminated Strand Lumber and Laminated Veneer Lumber Louisiana-Pacific Corporation Revised May 6, 2011

Featuring TJ Rim Board and TimberStrand LSL

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER:

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER:

ESR-2403 Reissued October 1, 2009 This report is subject to re-examination in one year.

STRUCTURAL TIMBER DESIGN

Classic Connection Conundrums

ROOF-CEILING CONSTRUCTION

Welded connections Welded connections are basically the same design in AISI as in AISC. Minor differences are present and outlined below.

SECTION ROUGH CARPENTRY

Trusted ICC ES PASLODE, Evaluation. report, or as to any. ICC-ES Evaluation

NAILED MORTISED-PLATE CONNECTIONS FOR SMALL-DIAMETER ROUND TIMBER 1. Kug-Bo Shim* Ronald W. Wolfe. Marshall Begel

Section Downloads. Lumber Design Values. Lumber Standard. Western Lumber Product Use Manual. Section 05: Truss Materials.

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: SCREW PRODUCTS, INC.

VERSA-LAM. An Introduction to VERSA-LAM Products

ICC-ES Evaluation Report

Tension Perpendicular to Grain Strength of Wood, Laminated Veneer Lumber, and a Wood Plastic Composite.

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: OMG, INC.

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER:

Wood Connections. Concepts of Well Designed Connections

TRUS JOIST RIM BOARD. Featuring TJ Rim Board and TimberStrand LSL. Multiple thicknesses, grades, and products to cover all your rim board needs

TER No Use of FastenMaster TimberLOK Fasteners to Provide Uplift & Lateral Resistance to Trusses & Rafters Attached to the Tops of Walls

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC AND COMPOSITE FASTENINGS REPORT HOLDER: EVALUATION SUBJECT:

ICBO ES ER-5598 n HUD MR 1310 DSA PA-123 n LAC RR25448 n CCMC R. Limit States Design

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC AND COMPOSITE FASTENINGS REPORT HOLDER: DEWALT

Attachment of Residential Deck Ledger to Metal Plate Connected Wood Truss Floor Systems Overview Revised 9/2/2016

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION WORKING COMMISSION W18- TIMBER STRUCTURES

A. Rough carpentry includes but is not limited to the following:

Attach Trusses and Rafters Faster

ROOF-CEILING CONSTRUCTION

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER:

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: DEWALT EVALUATION SUBJECT:

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: OMG, INC.

DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: OMG, INC.

Joint Evaluation Report

LP SolidStart Laminated Strand Lumber and Laminated Veneer Lumber Louisiana-Pacific Corporation Revised May 6, 2018

WoodWorks Connection Design Workshop

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: NAILS SECTION: STAPLES REPORT HOLDER:

Glulam Curved Members. Glulam Design. General Glulam Design. General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams

ESR-3042* Reissued August 1, 2012 This report is subject to renewal September 1, 2014.

ROOF-CEILING CONSTRUCTION

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION

Technical Bulletin

ESR-1254 * DELETED BY CITY OF LOS ANGELES. Reissued April 1, 2006 This report is subject to re-examination in one year.

SECTION R507 DECKS DECKING LEDGER BOARD BEAM. FOOTING BEAM SPAN CANTILEVER For SI: 1 inch = 25.4 mm FIGURE R507.2 DECK CONSTRUCTION

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: NAILS REPORT HOLDER: MiTek USA, INC.

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER: OMG, INC.

Moment-Resisting Connections In Laminated Veneer Lumber (LVL) Frames

DIVISION: WOOD, PLASTICS AND COMPOSITES SECTION: WOOD, PLASTIC, AND COMPOSITE FASTENINGS REPORT HOLDER:

DIVISION 6 WOOD AND PLASTICS

Prescriptive Residential Wood Deck Construction Guide Based on the 2006 International Residential Code

LVL8 H1.2 GENERAL FRAMING. Eco Friendly Revolutionary H1.2 Treatment Azotek by Zelam

Beam & Header Technical Guide. LP SolidStart LVL. 2900F b -2.0E. U.S. Technical Guide U.S. TECHNICAL GUIDE

4-Bolt Wood-to-Steel Connections

Introducing AJSTM INSTALLATION GUIDE USA. 8 th Edition USA

SIMPLIFIED DESIGN PROCEDURE FOR GLUED-LAMINATED BRIDGE DECKS

Lawrence A. Soltis, M. and Robert J. Ross, M. 1

ROOF-CEILING CONSTRUCTION

NDS. National Design Specification for Wood Construction 2015 EDITION

Dowel-type fasteners. Timber Connections. Academic resources. Introduction. Deferent types of dowel-type fasteners. Version 1

A Tale of Tearouts: Web Supplement

TFEC Standard for Design of Timber Frame Structures and Commentary

American Institute of Timber Construction 7012 South Revere Parkway Suite 140 Centennial, CO Phone: 303/ Fax: 303/

Transcription:

Timber Rivet Connections Design Process for a Hanger Connection RobertJ.Taylor,PhD,P.Eng.,Assoc.AIAand DavidM.Moses,PhD,P.Eng.,P.E.,LEED AP Introduction Timber rivet connections have been used successfully in many structures over the past 30 years (Fig. 1). They are part of the U.S. (1) and Canadian (2) structural wood design codes, but unfortunately, there are few published design examples to aid designers (3-6). This paper is targeted to the connection designer and provides a short summary of the 2005 National Design Specification (NDS ) for Wood Construction design process for timber rivet connections along with comments on design issues of common interest. Connection Strength The main advantage of using timber rivets lies in their ability to develop very high loads compared to other conventional connectors in timber. As of this writing, the 2005 NDS limits the installation of timber rivets only into Douglas-fir-larch or southern pine structural glued laminated timber (manufactured in accordance with ANSI/AITC A190.1), whereas CAN/CSA-O86-01 permits rivet installation into other common structural wood products through the use of a listed factor, H, (10.7.2.2) applied to the factored lateral strength resistance of a connection loaded either parallel or perpendicular to grain (Table 1). Test data (7-9) and rationale used for developing the CSA O86 provisions for timber rivets installed in solid sawn material showed that timber rivet capacity for Douglas-fir-larch glulam and Douglas-fir-larch solid sawn lumber were comparable. The test failure modes were rivet yielding, but concern had been expressed that wood checks and splits are more prevalent in solid sawn material than glulam. So, although the test results were comparable, the H factor for solid sawn stated in the code is 50 percent of the H factor for glulam to allow for checks and splits in solid sawn. Designers often ask: does it matter in which wood surface the timber connection is installed? From the research (3,7-12), there does not appear to be much difference in lateral load design capacity between face surface installations (surfaces 1 and 2 in Fig. 2) in parallel and perpendicular to the grain directions for timber rivet connections. Differences between surface 1 and 2 capacities are small in rivet yielding, but maybe more so for wood failure modes between each surface particularly in the perpendicular to grain direction. For design, these differences are small enough that installations in surfaces 1 and 2 can be treated the same. End grain (surface 3) installation design capacity, however, is considerably lower per NDS 13.2.5 and O86 10.7.2.7, roughly half of the perpendicular-to-grain surface 1 or 2 value for a 90 cut. Timber rivet connections, originally developed for use with glulam construction, may be a viable option for use with structural composite lumber (SCL) products. Tests (13) have been conducted on small samples to assess the performance and predictability of timber rivet connections in parallel strand lumber (PSL) and laminated strand lumber (LSL). The test joint configurations were designed to ex- Figure 1. Typical timber rivet connection. Table 1. CAN/CSA-O86-01 (10.7.2.2) H Factor. Douglas-Fir-Larch Glulam 1.0 Spruce-Lodgepole Pine Jack Pine Glulam 0.80 Douglas-Fir-Larch Sawn Timber 0.50 Hem-Fir Sawn Timber 0.45 Spruce-Pine-Fir Sawn Timber 0.40 Northern Species Sawn Timber 0.35 Winter 2007 3

hibit rivet failures in some combination of rivet yield and bearing deformation in the composite as opposed to brittle wood failure modes, such as block-shear tear-out or splitting. Results suggest that per-rivet design values should fall between 225 to 450 lb. (1 and 2 kn), depending on species and density of the composite and load direction with respect to grain of the composite strands. Timber rivets performed better in LSL than in PSL and better in yellow poplar PSL than in Douglas-fir or southern pine PSL; 1-1/2 in. (40 mm) rivets in yellow poplar LSL gave roughly equivalent performance to 2-1/2 in. (65 mm) rivets in yellow poplar PSL. Comparing rivet yield predictions following the NDS recommendations for round nails and the much simpler rule-of-thumb approach of using two-thirds the maximum load suggests that the latter approach provides a more consistently reliable evaluation of yield strength for timber rivets. Rivets in SCL are not currently addressed by the design codes. Additional study is still necessary to assess rivet connection performance in SCL when rivet density exceeds 1 rivet per square inch. Moisture Issues Designers are often concerned about cross-grain movement of wood due to moisture changes, especially with respect to timber connections using wide side plates, or where fasteners are designed as large groups on a common plate. There is a belief that timber rivets on wide plates can accommodate wood cross-grain shrinkage/expansion due to moisture content (MC) change without inducing tension perpendicularstressesinthewoodfiberaroundtherivetshanks; however, it is still a matter of the degree of MC change in the wood and the scale of the rivets, plate(s), and cross-grain dimension of wood member relative to each other. Standard connection practice is to never use a single steel splice plate on connections where the distance between outer rows of dowel connectors is greater than 5 in. (NDS Figure 11H). CSA O86 Clause 10.7.1.10 states, For wet fabrication conditions in sawn lumber, the maximum dimension perpendicular to grain over which a rivet group spans shall not exceed 200 mm (8 in.). Thisaccountsforshrinkageinthelongtermto prevent splitting, i.e., the timber shrinks but the steel plate does not, and tension perpendicular to grain develops which may result in splitting. Timber rivets, on the other hand (as opposed to doweltype connectors), have been tested and modeled for the groupsizesindicatedinthecodetables.thesetablesinthe NDS and O86 limit the size of the rivet groups and were developed using analytical models confirmed with testing for groups within that range (see references). In terms of addressing the shrinkage/splitting concern with the drying of wet lumber, there were tests (5) that looked at various environmental conditions. Glulam, however, is made from kilndried material and should be much more stable than solid sawn, non-kiln-dried material. It would, therefore, be prudent, as a connection designer to keep this in mind when designing large groups of rivets, i.e., the material being specified, the anticipated service conditions, and the distance between the outermost rows of rivets on a common plate. Introducing more plates separated across the wood grain could alleviate this concern. In practice, however, the authors have never run into this issue as a problem. Good practice is to always hot-dip galvanize metal components for corrosive or exposed environments and in situations where the structure may be exposed to the elements for long construction periods that might otherwise result in streaking stains on the wood that can be very difficult to remove (unsightly if the final structure is meant to be exposed for aesthetics). The 2005 NDS specifies timber rivets made of mild steel (AISI 1035) and plates of A36 steel. Further, design provisions and values of the 2005 NDS are applicable only to timber rivets that are hot-dip galvanized to ASTM A153. Plates also need to be hot-dip galvanized to ASTM A153 if the connection is in wet service. This is all described in 2005 NDS 13.1.1. Design Process The design process for timber rivets is illustrated through a worked example of a beam hanger connection using allowable stress design (ASD) and load resistance factor design (LRFD). Essentially, there are four strength limit states to a timber rivet connection (Fig. 3); two parallel-to-grain (P-direc- Figure 2. Glulam surfaces. Figure 3. Four strength limit states for a typical timber rivet connection. 4 WOOD DESIGN FOCUS

tion) and two perpendicular-to-grain (Q-direction). For each grain direction either the rivet yields and controls or the wood fiber controls. If the load is applied only in the P-direction, or only in the Q-direction, then the number of strength limit states to check reduces to two: rivet yielding and wood fiber control. The lower strength will govern the design. The perforated plate is stiff and, although rarely an issue, should also be checked using appropriate steel code provisions (14,15). Although as mentioned previously, this potential limit state in the plate s tensile capacity could be added to the above states should one wish to assure connection ductility. The design process is simple, regardless whether ASD or LRFD is used, and is best implemented using a spreadsheet, or other calculation software because of its recursive nature: Determine total loads that must be resisted (demand) Assume a trial design based on connection configuration geometry that will accommodate a grid of rivets, considering tabulated minimum edge and end distances. The main variables here are: plate thickness, rivet length, rivet spacing parallel-to-grain, number of rows of rivets, and number of rivets in each row. Check rivet yield failure an equation is given for this based on the capacity of a single rivet through a single plate. There are two equations: one each for the P and Q directions respectively (NDS 13.2-1 and 13.2-2). Check wood failure parallel-to-grain (P-direction) from a table based on rivets installed on faces of the connection. The tables are organized by rivet length and by plate thickness for typical rivet grid spacings. Footnotes to the table offer explanations of member width. The tables simplify the design process and allow the designer to avoid using complex equations for predicting wood failure in shear or tension. The equations were originally developed and verified by tests (7). For details on these equations, see the 2005 NDS Commentary. NDS Tables 13.2.1A 13.2.1F are for connections with steel side plates on opposite sides of the wood member. The reference design value in the table is for the capacity of one 1/4 in. side plate with associated rivets (NDS C13.2.1). Thus for a connection with plates on opposing faces, the designer would double the table value to determine the reference capacity of the connection. For connections with a single plate of rivets on one side of the wood member, the designer enters the table with twice the thickness of the wood member to get the correct reference capacity for a singlesided connection. Check wood failure perpendicular-to-grain (Q-direction) an equation (NDS 13.2-3) is given for this based on the capacity of a single rivet through a single plate. The equation references two tables: one for the reference value (NDS Table 13.2.2A) based on one plate with rivets installed in one face of the connection and another for the Geometry Factor, C Δ, (NDS Table 13.2.2B). Again, the reference design value obtained from the equation is doubled for connections having two side plates. The lowest capacity of four failure checks will govern the capacity of the connection. If rivet yield governs, then ductility of the connection is assured. If wood capacity controls, the connection is likely to be less ductile. Adjust the determined capacity for site environmental conditions using adjustment factors. Calculate the demand:capacity ratio a value less than 1.0 is safe. If the ratio is greater than 1.0, try adding more rivets and repeat the trial design. Off the table for number of rivets? Try increasing the rivet spacing parallel-to-grain and move to another table. No good? Try increasing the plate thickness. Still not enough? Try increasing the rivet length in increments to the maximum penetration permitted by the connection geometry, and repeat the trial. A flowchart in Figure 4 illustrates the design process as referenced in the 2005 NDS. Figure 4. Flowchart of the design process as referenced in the 2005 NDS. (A larger version of the flowchart is available in the online version at www.awc.org.) [Appended to this document.] Winter 2007 5

Design Example Hanger Connection To illustrate the design process, an example of a typical beam hanger connection is provided. The example is worked in both ASD and LRFD and is based on the 2005 NDS timber rivet provisions found in Chapter 13. For this example, as shown in Figure 5, consider a beam-to-girder hanger connection with the hanger installed with rivets to one wood face of the girder and loaded in the girder perpendicular-to-grain direction. Here, two strength limit states are of interest: rivet strength and perpendicular-to-grain wood strength. The hanger is assumed to be structurally adequate. Notation in the example is defined in Figure 4. Summary Timber rivets are a versatile means of making large scale timber connections functionally and aesthetically possible. Design of timber rivet connections using current code references is presented. An example is provided to illustrate the process and to aid the designer in this task. Disclaimer It is intended that this paper be used in conjunction with competent engineering design. The authors, AF&PA, and Figure 5. Timber rivet hanger connection. Equilibrium Engineering, Inc. assume no responsibility for errors and/or omissions in this paper, or for any engineering designs, plans, or construction prepared from it. References References are available from the authors upon request. RobertJ. Taylor, PhD, P.Eng., Assoc. AIA, Director, Technology Transfer, American Forest & Paper Association/American Wood Council, Washington, DC and David M. Moses, PhD, P.Eng., P.E., LEED AP, Structural Engineer, Equilibrium Consulting, Inc, Vancouver and Toronto, Canada. Example: Beam Hanger Using Timber Rivets ASD & LRFD Design the beam hanger connection shown using timber rivets. The glulam beam and girder are untreated Douglas-fir glulam. The factored beam reaction is due to dead plus snow loads, and service conditions are wet. Use 2-1/2 in. rivets and 1/4 in. plate, and 2005 NDS provisions. Note that the designer must also confirm the bearing area for the roof beam support and consider possible uplift conditions in the design of this connection. See Figure E1 for a plan view of the hanger. To reduce tension perpendicular stresses from connectors placed in the middle of the side of the girder, just as for larger fasteners, it is good practice to hang the load from the top of the girder. This has additional benefits in terms of the number of rivets required, and ductility (see Fig. E2). Note: This design solution has been developed using Mathcad software by Parametric Technology Corporation (PTC ). Therefore, formatting of certain variables and equations as shown in this example are unique to this software. Figure E1 Figure E2 6 WOOD DESIGN FOCUS

Wood: b beam := 5.125 in. d beam := 13.5 in. Rivet/Plate: l r := 2.5 in. t p := 0.25 in n p := 2 (treat hanger face as two plates, separated by carried beam) Modification Factors (NDS Table 10.3.1): C D := 1.15 Load duration/time effect λ := 0.8 (ASD - NDS 10.3.2, LRFD - NDS Table N3; Snow Load) (NDS Table N2) φ z := 0.65 (NDS Table N1) K F := 216. K φ z F = 3.323 C M := 0.8 Wet service (NDS Table 10.3.3) C t := 1.0 Less than 100 F (NDS Table 10.3.4) C st := 1.0 0.25 in. steel plate (NDS Table 13.2.3) Demand: D := 1500 lbf S := 4495 lbf ASD LRFD R:=D+S R f := 1.2D + 1.6S R = 5995 lbf R f := 8992 lbf Capacity: Assume two rows in each plate, each side of hanger: s p := 1 in. n R := 2 Try 10 rivets each row, spaced at 1 in. s q := 1 in. perpendicular to grain. n c := 10 Wood: From NDS Table 13.2.2A (load on wood is perpendicular to grain): q w := 1173 lbf Locate connection and check end and edge distances from NDS Table 13.3.2 n R =2 a p := 3 in. End distance parallel to grain a q := 2 in. End distance perp to grain e p := 1 in. Rivet-to-unloadedwood edge distance ep ( n 1) s c q e ps := 0.5 in. e q := 2 in. = 0111. Rivet-to-steel edge distance (Appendix M) Rivet-to-loaded-wood edge distance C Δ := 5.48 (NDS Table 13.2.2B interpolated) penetration = rivet length plate thickness 1/8 in. ( l r t p 0.125 in. ) p : = in. p = 2125. 08. Q w : = qw p CΔ Q w = 11748.05 lbf 2005 NDS (13.2-3) Rivet (from NDS Equation 13.2-2): 032. Qr : = 160 p nr nc lbf Q r =4072.91 lbf 2005 NDS (13.2-2) Take the minimum of wood or rivet capacity: Q:=min(Q w,q r ) Q = 4072.91 lbf Rivet controls Adjust to conditions with rivet capacity governing (NDS Table 10.3.1, Footnotes 4 and 5). Note that C D drops out of the ASD capacity when rivet yield controls (Footnote 4), yet λ remains on the LRFD side. For LRFD, the time effect factor, λ, applies to P r and Q r since the format conversion factor, K F, for connections adjusts from a 10-year to a 10-minute load basis. C D does not apply for ASD values of P r and Q r (Footnote 4) because rivet bending capacity was treated as a steel limit state in early research and implementation. The early assumption was that rivet bending capacity is unaffected by load duration. Load duration effects were specifically considered in checks of wood strength limit states, not steel strength limit states. n p = 2 (number of plates) Q := Q n p C M C t ASD LRFD Q = 6516.66 lbf λ φ z K F Q = 11260.78 lbf Demand Capacity Ratios R Q =0.92 f ( λ φ RK Q ) Solution see Figure E3. z F = 079<. 0.1 OK Figure E3 Winter 2007 7

Start Determine: Demand Loads; resolve to and grain directions (13.2-4) N, P, Q Determine: Minimum Edge / End Distances Table 13.3.2 a p, a q, e p, e q Choose: Plate Thickness Rivet Length (calc penetration 13.2.1) Rivet Spacing Grain Row Spacing Grain Number of Rivets in Each Row Number of Rows Load Parallel to Wood Grain P Y t s p s p s q n C n R Determine: Rivet Grain Capacity (13.2-1) P r = 280 p 0.32 n R n C Adjust as needed: Plate Thickness Rivet Length (calc penetration 13.2.1) Rivet Spacing Grain Row Spacing Grain Number of Rivets in Each Row Number of Rows t s p s p s q n C n R N Determine: Wood Grain Capacity Table 13.2.1A-F P w Load Perpendicular to Wood Grain Q Y Determine: Rivet Grain Capacity (13.2-2) Q r = 160 p 0.32 n R n C N Determine: Wood Grain Capacity (13.2-3) Q w = q w p 0.8 C Table 13.2.2A q w Table 13.2.2B C N Determine: Lowest Governing Capacity in each direction Min (P w, Q w ) and Min (P r, Q r ) Demand / Capacity 1.0 Y Stop Apply: Strength Adjustment Factors for Site Conditions to Min (P w, Q w, P r, Q r ) to get P and Q Table 10.3.1 Footnotes 4, 5, 6 (10.3.2); Table 2.3.2; Appendix B C D Table 10.3.3 C M Table 10.3.4 C t Table 13.2.3 C st (10.3.7; N.3.1); Table N1 K F (10.3.8; N.3.2); Table N2 z (10.3.9; N.3.3); Table N3 Number of Plates n P Determine: Demand / Capacity Ratio N / N Determine: Capacity Loads; resolve from and grain directions (13.2-4) N, P, Q Figure 4: Timber Rivet Design Process Flowchart (referenced to 2005 NDS)