Learning Objectives:

Similar documents
Chapter 5: Signal conversion

Learning Objectives:

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

*X036/12/01* X036/12/01 TECHNOLOGICAL STUDIES HIGHER NATIONAL QUALIFICATIONS 2013 TUESDAY, 21 MAY 1.00 PM 4.00 PM

DIGITAL TO ANALOG CONVERTERS. 1. Digital to Analog Converter using Binary- Weighted Resistors

Fig 1: The symbol for a comparator

Operational Amplifiers

Learning Objectives:

Chapter 7: Instrumentation systems

Lecture 6: Digital/Analog Techniques

CENG4480 Lecture 04: Analog/Digital Conversions

OCR Electronics for A2 MOSFETs Variable resistors

P a g e 1. Introduction

DATA CONVERSION AND LAB (17.368) Fall Class # 07. October 16, 2008

CHAPTER ELEVEN - Interfacing With the Analog World

Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 24

Fan in: The number of inputs of a logic gate can handle.

= V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached.

using dc inputs. You will verify circuit operation with a multimeter.

ELEC207 LINEAR INTEGRATED CIRCUITS

Data Conversion and Lab (17.368) Fall Lecture Outline

Operational amplifiers

FRIDAY, 18 MAY 1.00 PM 4.00 PM. Where appropriate, you may use sketches to illustrate your answer.

GCE AS. WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS

Chapter 2 Signal Conditioning, Propagation, and Conversion

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

MONDAY, 7 JUNE 1.00 PM 4.00 PM. Where appropriate, you may use sketches to illustrate your answer.

GCSE Electronics. Scheme of Work

Reading: Schwarz and Oldham (light on non-ideal) and comparator viewgraphs. Lecture 14: October 17, 2001

GCSE (9-1) WJEC Eduqas GCSE (9-1) in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS

Operational Amplifiers

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

Thursday 6 June 2013 Afternoon

RP 5/3/13. HLC. BTEC. Assessment Center Number Student:

The simplest DAC can be constructed using a number of resistors with binary weighted values. X[3:0] is the 4-bit digital value to be converter to an

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC)

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics

Chapter 4: AC Circuits and Passive Filters

Operational Amplifiers

GCE A level 1145/01 ELECTRONICS ET5. P.M. THURSDAY, 31 May hours. Centre Number. Candidate Number. Surname. Other Names

Worksheet 1 - Operational amplifier principles 3. Worksheet 2 - Comparator vs Schmitt trigger 5. Worksheet 3 - Non-inverting amplifier 7

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

Lesson number one. Operational Amplifier Basics

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

Wednesday 7 June 2017 Afternoon Time allowed: 1 hour 30 minutes

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

Current Amplifying using a Line Driver

Thursday 5 June 2014 Afternoon

A-D and D-A Converters

University of Pittsburgh

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Operational Amplifiers (Op Amps)

Chapter 9: Operational Amplifiers

Applications of diodes

Lecture 2. Digital Basics

Outline. Analog/Digital Conversion

Lab 10: Single Supply Amplifier

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Basic Operational Amplifier Circuits

ECE 363 EXAM #2 (F18) 4 problems for 100 pts Problem #1: Amplifier Output Error (25 pts)

An electronic unit that behaves like a voltagecontrolled

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Lab Exercise 6: Digital/Analog conversion

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

THURSDAY, 15 MAY 1.00 PM 4.00 PM. Where appropriate, you may use sketches to illustrate your answer.

Electronic Simulation Software for Teaching and Learning

COMBINATIONAL CIRCUIT

Chapter 7: From Digital-to-Analog and Back Again

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

Analog-to-Digital Conversion

Sect Linear Equations in Two Variables

16.2 DIGITAL-TO-ANALOG CONVERSION

OCR ADVANCED SUBSIDIARY GCE IN ELECTRONICS (3826) OCR ADVANCED GCE IN ELECTRONICS (7826) Specimen Question Papers and Mark Schemes

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

Operational Amplifier (Op-Amp)

RESIDUE AMPLIFIER PIPELINE ADC

THURSDAY 15 MAY 1.00 PM 4.00 PM

Specifying A D and D A Converters

Microprocessor based process control

CHAPTER 6 DIGITAL INSTRUMENTS

A2 Electronics Project: DARPS: A Digital Audio Recorder and Playback System. Name: Andrew Cottrell Year: 2011

Electronics EECE2412 Spring 2016 Exam #1

Draw in the space below a possible arrangement for the resistor and capacitor. encapsulated components

UNIVERSITI MALAYSIA PERLIS

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

Operational amplifiers

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

Operational Amplifiers

Assoc. Prof. Dr. Burak Kelleci

Analytical Chemistry II

IES Digital Mock Test

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

Technological Studies. - Applied Electronics (H) TECHNOLOGICAL STUDIES HIGHER APPLIED ELECTRONICS OP-AMPS. Craigmount High School 1

GCE A level 1145/01 ELECTRONICS ET5

IFB270 Advanced Electronic Circuits

ENGINEERING. Unit 4 Principles of electrical and electronic engineering Suite. Cambridge TECHNICALS LEVEL 3

Transcription:

Learning Objectives: At the end of this topic you will be able to; Analyse and design a DAC based on an op-amp summing amplifier to meet a given specification. 1

Digital and Analogue Information Module ET5 Electronic Systems Applications. In many situations, real world information exists in analogue form, not digital. Sensors may be monitoring temperature, or light intensity, or humidity, and outputting analogue signals such as voltages that increase as temperature / light level etc increase. Output devices, such as motors, may rotate faster or slower, rather than being simply on or off. Sounders may be louder or quieter. Lamps can be brighter or darker. All of these require analogue signal processing. PIC microcontrollers are digital devices. They process data in digital form, and so we often need to convert information from analogue sensors into digital data, process it with a PIC microcontroller, and then convert the digital output to an analogue signal again. The first of these operations requires an Analogue to Digital Converter (ADC). The second requires a Digital to Analogue Converter (DAC). This section looks at the second of these devices. 2

Digital to Analogue Converters A DAC must generate an analogue output voltage which increases in size as the binary number applied to the input increases in size. There are a number of ways of achieving this. The approach used here modifies a summing amplifier circuit based on the op-amp inverting voltage amplifier. ET1 section 1.4.2 covered the inverting voltage amplifier: R F R IN X V IN V OUT 0V Voltage Gain G (= V OUT / V IN ) = - R F / R IN (providing that the output is not saturated.) The content of the following section is non-examinable! It is aimed at improving your understanding of the summing amplifier. The voltage gain formula relies on two properties of the inputs (inverting and non-inverting) of the op-amp. 1. They both sit at the same voltage, unless the output saturates. In the inverting amplifier circuit, the non-inverting input is connected directly to the 0V power rail. As a result, the inverting input and point X in the circuit diagram, also sit at 0V. The voltage at the left-hand end of the input resistor R IN = V IN. The voltage at the right-hand end of R IN = 0V. Hence: (a) the voltage drop across the R IN = V IN, and (b) the voltage drop across the feedback resistor R F = -V OUT. 3

Module ET5 Electronic Systems Applications. (The minus sign takes into account the fact that this is an inverting amplifier a positive input voltage produces a negative output voltage. Another way to view this is to look at the current flowing through the feedback resistor see below.) We next apply the Ohm s law formula to obtain expressions for the currents I IN and I F flowing through R IN and R F respectively: I IN = V IN / R IN, using (a) and I F = -V OUT / R F, using (b) 2. They draw virtually no current. The current flowing through the input resistor R IN is identical to the current flowing through the feedback resistor R F, (because the current flowing into the op-amp through the inverting input is so small that we can ignore it.) In other words, I IN = I F Combining these two sets of information: I IN = I F V IN / R IN = -V OUT / R F Re-arranging this equation gives: V OUT / V IN = - R F / R IN This is the voltage gain formula quoted earlier! The next step is to add a second input resistor, supplied with its own voltage signal. The labels have been changed so that the two input voltages can be identified separately. The new circuit diagram is: R 2 R F R 1 V 2 V 1 V OUT 0V 4

Providing that the output is not saturated, the inverting input and the noninverting input still sit at 0V. The voltage drop across R 1 is still V 1, and so the current flowing through R 1 is: I 1 = V 1 / R 1 Similarly, the voltage drop across R 2 is V 2 and the current through it is: I 2 = V 2 / R 2 As before, the current through the feedback resistor is: I F = - V OUT / R F When we ignore the tiny currents flowing in the op-amp inputs we get: I F = I 1 + I 2 Substituting the values from the earlier equations: - V OUT / R F = V 1 / R 1 + V 2 / R 2 This can be re-arranged to give : V OUT = -R F (V 1 / R 1 + V 2 / R 2 ) This is the equation for the summing amplifier. Notice that it is the input currents that are summed as they flow through the feedback resistor. In fact, the gain formula could be written, (but isn t!) as: V OUT = -R F (I 1 + I 2 ) Further input signals can be added, each with its own input resistor, as shown in the following circuit diagram for a four channel summing amplifier: R F R 4 R 3 V 4 R 2 V 3 R 1 V 2 V 1 V OUT 0V The formula for this circuit is: V OUT = -R F (V 1 / R 1 + V 2 / R 2 + V 3 / R 3 + V 4 / R 4 ) 5

Module ET5 Electronic Systems Applications. For example, given the following circuit: 100k 2V 56k 1.4V 10k 0.2V 22k 0.11V 100k V OUT 0V The output voltage will be: V OUT = -100 (2 / 100 + 1.4 / 56 + 0.2 / 10 + 0.11 / 22) = -7V Now back to the task in hand, the DAC, and examinable content! Digital signals A digital signal has two significant properties: It is a two state signal. It consists of a number of bits, each either logic 0 (~ 0V) or logic 1 (~+V S ). The place value of the bit (how much it is worth,) depends on its position. o The least significant bit (lsb) is worth either 0 (for logic 0) or 1 (for logic 1). o The next bit on the left is worth either 0 (for logic 0) or 2 (for logic 1). o The next is worth 0 or 4, and so on. The table shows the value of a logic 1 signal in various positions in an eight bit binary number. 6

msb 8 bit binary number lsb Decimal value 1 1 1 2 1 4 1 8 1 16 1 32 1 64 1 128 Hence the binary number 10010011 is equivalent to the decimal number (128 + 16 + 2 + 1) = 147. The DAC circuit must take into account both of these properties: The input voltages will be one of two values, either that representing logic 0, usually 0V, or that representing logic 1, usually close to the positive supply voltage (+V S ). The output voltage must take into account the place value of the logic 1 input signals, by having a voltage gain that reflects this place value. In other words, if the input receiving the least significant bit (lsb) has a voltage gain of G, then the input connected to the next bit must have a gain of 2G, the next input a gain of 4G, and so on. In DAC circuits based on the summing amplifier, this is achieved by successively reducing the size of the input resistor. When the lsb input resistor is R, the next input resistor will be R/2, the next R/4 and so on. The design is based on an inverting amplifier, and so, when using positive logic (logic 1 = +V S,) the output voltage is negative. (The circuit must be powered from a split power supply, offering voltage rails at +V S, 0V and V S.) To overcome the inversion, a second inverting amplifier often follows the first. This may simply have a voltage gain of -1. 7

Module ET5 Electronic Systems Applications. The next circuit diagram shows these ideas incorporated into a 4 bit DAC: Digital input = binary number DCBA msb lsb A B C D 240k 120k 60k 30k 10k 100k 100k V 1 Analogue output V OUT 0V Take care when choosing resistor values for this circuit! It is very easy to saturate the output. The simplest way to avoid this is to use fractional voltage gains for the summing amplifier. In the above circuit, for example, the lsb (input A) has a voltage gain of 1/24, input B has a gain of 1/12, input C 1/6 and the msb, input D, a gain of 1/3. Analysing a DAC circuit: To analyse the above circuit, assume that 0V represents a logic 0 signal, and +12V a logic 1. Think of it as four inverting amplifiers combined so that the output voltage is the sum of their outputs. The second op-amp has a voltage gain of -1, and so simply reverses the polarity of the output signal. For example: Input the binary number 0001, i.e. A = 12V and B = C = D = 0V. Voltage gain on A s input = - R F / R IN = - 10/240, so its output = - 12 x 10/240 = -0.5V. The other inputs are set to 0V and so they output 0V. The final output = - (-0.5 + 0 + 0 + 0) = +0.5V 8

Input the binary number 1011, i.e. A = B = D 12V and C = 0V. Voltage gain on A s input = - 10/240, and its output = - 12 x 10/240 = -0.5V. Voltage gain on B s input = - 10/120, and its output = - 12 x 10/120 = -1.0V. Voltage gain on D s input = - 10/30, and its output = - 12 x 10/30 = -4.0V. The final output = - (-0.5 + (-1.0) + 0 + (-4.0)) = +5.5V Exercise 1 (The solutions are given in the table that follows.) Calculate the output voltage V OUT when the following binary numbers are applied to the input: (a) 0111 (b) 1101 (c) 1111 9

DAC output - summary Module ET5 Electronic Systems Applications. The behaviour of the four bit DAC can be summarised in two ways as a table of output voltages, or as a graph. Both of these are shown below. Binary number input D C B A V 1 /V V OUT /V 0 0 0 0 0 0 0 0 0 1-0.5 0.5 0 0 1 0-1.0 1.0 0 0 1 1-1.5 1.5 0 1 0 0-2.0 2.0 0 1 0 1-2.5 2.5 0 1 1 0-3.0 3.0 0 1 1 1-3.5 3.5 1 0 0 0-4.0 4.0 1 0 0 1-4.5 4.5 1 0 1 0-5.0 5.0 1 0 1 1-5.5 5.5 1 1 0 0-6.0 6.0 1 1 0 1-6.5 6.5 1 1 1 0-7.0 7.0 1 1 1 1-7.5 7.5 V /V OUT 7.0 6.0 5.0 4.0 3.0 2.0 Step size = 0.5V 1.0 DCBA 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Input 10

Notice that the step size depends on the voltage gain of the least significant input of the DAC (and the voltage that represents logic 1.) When viewed as a graph, the results show the characteristic staircase waveform. The output is analogue it gets bigger as the digital input number gets bigger, but it is not continuous but rises in steps. Step size = V L1 R F / R 1 where V L1 = voltage corresponding to logic 1 R F = feedback resistance R 1 = input resistance for least significant input. Exercise 2 (Solutions are given at the end of the topic.) Here is the circuit diagram for a 3 bit DAC. A B C 300k 150k 75k 24k 390k 390k V OUT 0V A logic 1 signal is represented by 10V and logic 0 by 0V. Analyse the performance of this circuit by producing a table to show how the output voltage varies as increasing binary numbers are applied to the input. Then plot these results as a graph of output voltage against input number. 11

Module ET5 Electronic Systems Applications. Designing a DAC to meet a given specification: The performance of the DAC can be described in a number of ways, including: the number of bits that can be inputted; the voltage range for the output; the step size for the output voltage; the speed of conversion; the power supply used. For example, design a DAC with the following parameters: number of input bits = 4; output voltage range = 0 to 12V; logic 1 = 8V and logic 0 = 0V; power supply = +15V / 0V / -15V. In general, a n bit DAC will have 2 n output voltage levels, with 2 n 1 steps between them. As can be seen on the graph on page 10, a four bit DAC produces sixteen (=2 4 ) output voltage levels, with fifteen steps (2 4 1) between them. These fifteen steps must cover the 0 to 12V voltage range, so that each step is a voltage change of (12 / 15) V, = 0.8V. Using the formula quoted earlier: where gives: so that: or: Step size = V L1 R F / R 1 V L1 = voltage corresponding to logic 1 = 8V R F = feedback resistance R 1 = input resistance for least significant input, 0.8 = 8 x R F / R 1 R F / R 1 = 0.1 R 1 = 10 x R F The following values satisfy this requirement: R F = 10k R 1 = 100k 12

In order to get the correct weighting for the voltage gains for the four inputs, the input resistors are in the ratio R 1, R 1 /2, R 1 /4 and R 1 /8. The final circuit diagram is shown below: A B C D lsb msb 100k 50k 25k 12.5k 10k 100k 100k V OUT 0V The two resistors used in the second inverting amplifier can have any value, as long as both are equal (to give a voltage gain of -1) and have resistance greater than 1k (to reduce the size of the current flowing in them, and hence the power dissipated.) Exercise 3 (A solution is given at the end of the topic) Design a DAC with the following parameters: number of input bits = 3; output voltage range = 0 to 14V; logic 1 = 10V and logic 0 = 0V; power supply = +15V / 0V / -15V. Your design must use the following components: 2 op-amps, 2 220k resistors, 1 20k resistor, 1 4k resistor and two other resistors, for which you must calculate the values 13

Module ET5 Electronic Systems Applications. Practice Exam Questions: 1. A microprocessor systems can contain both an analogue-to-digital converter (ADC) and a digital-toanalogue converter (DAC) Here is the circuit diagram for a digital-to-analogue converter (DAC). A B C 120k 60k 30k 30k Amp X 100k 100k Amp Y V 1 V 2 The most significant bit of the binary number is applied to input C, and the least significant bit to input A. The outputs of the op-amps saturate at +12V and -12V. (i) What is the gain of amplifier Y? [1].. (ii) The following voltages are applied to inputs A, B and C. V A = +5V V B = 0V V C = 0V Calculate: V 1 [1].... V 2 [1].... 14

(iii) The system uses +5V to represent logic 1 and 0V to represent logic 0. Use the axes provided to draw a graph showing the relationship between V 2 and the digital input signal, for the four values of input given. Indicate the scale you are using for the vertical axis. [2] Voltage/V Output V 0 2 000 001 010 011 100 Digital input (iv) What is the maximum value of output voltage V 2 that this 3- bit DAC will produce? [1].. 15

Module ET5 Electronic Systems Applications. 2. (a) The diagram shows the circuit for a 3-bit linear digital-to-analogue converter (DAC), based on a summing amplifier. A R 1 R 4 B C R 2 R 3 Output 0V (i) Calculate suitable values for the resistors used in the circuit, so that the DAC has the following characteristics: Digital input Output C B A voltage 0 0 0 0V 0 0 1-0.5V In this system, logic 1 is 12V and logic 0 is 0V. [3]........ R 1 = R 2 = R 3 = R 4 = 16

(ii) The DAC is connected to a counter, as shown in the following diagram. Pulse generator 3-bit Counter DAC V OUT Initially, the counter is reset. Then ten pulses are sent into the counter. Use the axes provided to sketch the resulting output signal V OUT as this happens. [3] Output Vol tage/v 10 8 6 4 2 0-2 0 1 2 3 4 5 6 7 8 9 10 Number of pulses -4-6 -8-10 17

Solutions to Exercises: Module ET5 Electronic Systems Applications. Exercise 1: See the results given in the table on page 10. Exercise 2: Table of results - Binary number C B A V OUT / V 0 0 0 0 0 0 1 0.8 0 1 0 1.6 0 1 1 2.4 1 0 0 3.2 1 0 1 4.0 1 1 0 4.8 1 1 1 5.6 Graph of results V /V OUT 7.0 6.0 5.6 5.0 4.0 3.0 2.0 Step size = 0.8V 1.0 CBA 000 001 010 011 100 101 110 111 Input 18

Exercise 3: A B C 20k 10k 5k 4k 220k 220k V OUT 0V 19