DESIGN AND DEVELOPMENT OF HIGH FREQUENCY RESONANT TRANSITION CONVERTER

Similar documents
HIGH FREQUENCY DC-DC CONVERTER DESIGN USING ZERO VOLTAGE SWITCHING

Soft switching of multioutput flyback converter with active clamp circuit

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

A NEW ZVT ZCT PWM DC-DC CONVERTER

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Chapter 6 Soft-Switching dc-dc Converters Outlines

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

Design of step-up converter for a constant output in a high power design

DC-DC Resonant converters with APWM control

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

Modified Resonant Transition Switching for Buck Converter

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

High Frequency Isolated Series Parallel Resonant Converter

Zero Voltage Switching in a Low Voltage High Current DC-DC Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

THE converter usually employed for single-phase power

Chapter 9 Zero-Voltage or Zero-Current Switchings

Designers Series XII. Switching Power Magazine. Copyright 2005

ZVT Buck Converter with Synchronous Rectifier

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

Soft Switched Resonant Converters with Unsymmetrical Control

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

IN THE high power isolated dc/dc applications, full bridge

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

REVIEW OF UNCOUPLED, COUPLED INDUCTOR AND RCN BASED TWO-PHASE INTERLEAVED BOOST CONVERTER FOR PHOTO-VOLTAIC APPLICATIONS

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

Non-isolated DC-DC Converter with Soft-Switching Technique for Non-linear System K.Balakrishnanet al.,

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

A NOVEL APPROACH FOR INTEGRATED PUSHPULL CONVERTER USING ZVT-PWM TECHNIQUE IN DC UPS

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

ZCS-PWM Converter for Reducing Switching Losses

International Journal of Engineering Research-Online A Peer Reviewed International Journal

Simplified loss analysis and comparison of full-bridge, full-range-zvs DC-DC converters

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems

Zero Voltage Switching In Practical Active Clamp Forward Converter

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network

Design and analysis of ZVZCS converter with active clamping

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology

Chapter 2 LITERATURE REVIEW

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A High Voltage Gain DC-DC Boost Converter for PV Cells

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

Voltage Fed DC-DC Converters with Voltage Doubler

Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

NOWADAYS, several techniques for high-frequency dc dc

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

IJMIE Volume 2, Issue 9 ISSN:

A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Implementation of ZCT PWM Converters for Renewable Energy Applications

Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency 1 Z. Pavlović, J.A. Oliver, P. Alou, O. Garcia, R.Prieto, J.A.

Implementation Of Bl-Luo Converter Using FPGA

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER

High Step-Up DC-DC Converter for Distributed Generation System

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

INSULATED gate bipolar transistors (IGBT s) are widely

IMPLEMENTATION OF FM-ZCS-QUASI RESONANT CONVERTER FED DC SERVO DRIVE

White Paper. Gate Driver Optocouplers in Induction Cooker. Load Pot. Control. AC Input. Introduction. What is Induction Cooking?

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

Single-Phase Power Factor Correction Circuit Using Zero-Voltage-Transition Technique

Design of Class-E Rectifier with DC-DC Boost Converter

LLC Resonant Converter for Battery Charging Application

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Implementation Full Bridge Series Resonant Buck Boost Inverter

Single Switch Forward Converter

Soft Switching with Cascaded Transformers to Drive the PMDC Motor

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS OF ZVS BIDIRECTIONAL DC-DC CONVERTER

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

PARALLELING of converter power stages is a wellknown

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

A BI-DIRECTIONAL DC-DC CONVERTER TOPOLOGY FOR LOW POWER APPLICATION 1

A Novel Concept in Integrating PFC and DC/DC Converters *

Research Paper ELECTROMAGNETIC INTERFERENCE REDUCTION IN CUK CONVERTER USING MODIFIED PWM TECHNIQUES

Conventional Single-Switch Forward Converter Design

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

Transcription:

DESIGN AND DEVELOPMENT OF HIGH FREQUENCY RESONANT TRANSITION CONVERTER Parimala S.K 1, M.S.Aspalli 2, Laxmi.Deshpande 3 1 Asst Professor, Dept of EEE, BNMIT, Bangalore, Karnataka, India. 2 Professor, Dept of EEE, PDACE, Gulbarga, Karnataka, India 3 Asst Professor, Dept of EEE, BNMIT, Bangalore, Karnataka, India. Abstract The demand for higher switching frequencies in order to achieve higher power conversion densities and efficiencies has made resonant mode conversion [1] techniques to be used nowadays to improve pulse width modulated dc- dc converters which can operate at higher switching frequencies upto 1 MHz. Since the parasitic elements that normally present in a power circuit can be very significant at this frequency, most of the work is focused on resonant topologies. The topology [2] enables to advantageously employ transformer leakage inductance, MOSFET output capacitance and the MOSFET body diode, to easily move their designs upwards in frequency. The topology offers additional advantages like zero voltage switching at a constant switching frequency, which substantially reduces switching losses. The ability to use higher switching frequency will ultimately reduce the overall size of the power supply. A resonant transition converter is selected for developing a compact 3W power supply. The switching frequency considered is 5 khz for achieving the required power conversion density. At this switching frequency it is possible to take advantage of lead inductances and parasitic capacitance of switching MOSFETs to either eliminate or substantially reduce the resonant tank elements required for achieving a resonant transition conversion to improve efficiency. Keywords: Resonant converters, Resonant transition converter, ZVS. ----------------------------------------------------------------------------***------------------------------------------------------------------------ 1. INTRODUCTION The pulse width modulated half bridge converter developed belongs to the class of Resonant Transition Converter and offers ZVS characteristics. Except for the resonant transitions, it is identical to the square wave PWM converter topology. ZVS [3] in Resonant Transition Converter is obtained relying mainly on the parasitic components of power transformers and output capacitance of the MOSFET Switches, which form the resonating LC tank circuit that substantially reduces switching losses during each transition, giving us low conduction losses and constant frequency operation. However, with conventional PWM technologies, the switching losses also increase proportionately with the frequency of operation. In order to realize the high power densities possible with high switching frequencies, it is therefore essential to reduce the switching losses by employing resonant switching techniques. Therefore, focusing on the overall system performance, its size, weight, efficiency and power conversion density, Resonant Transition Converter topology was found to be suitable to operate at high frequencies. Therefore the topology is employed to develop a 3W, 5 KHz, DC-DC Converter with multiple outputs for power requirements of an advanced electronic power conditioner. 2. NEED FOR RESONANT CONVERTER In all the pulse-width modulated DC-DC and DC-AC converter topologies discussed earlier, the controllable switches are operated in a switch mode where they are required to turn-on and turn-off the entire load current during each switching. In these switch-mode operations the switches are subjected to high switching stresses and the finite duration of the switching transitions will cause the high peak pulse power dissipation in the device that will cause the degradation in converters efficiency and worst of all will lead to the destruction of the device. These converters are therefore termed as Hard Switching converter topologies [5] where the switching losses contribute to the major percentage of overall losses, as high switching power loss increases linearly with the switching frequency of the pulse-width modulation. Another significant drawback of the switch-made operation is the electromagnetic interference (EMI) produced due to large di/dt and dv/dt caused by a switched-mode operation. These shortcomings of switchmode converters are exacerbated if the switching frequency is increased in order to reduce the converter size and weight, and Volume: 3 Special Issue: 3 May-214 NCRIET-214, Available @ http://www.ijret.org 128

hence to increase the power density.. Fig1 shows the switching losses for a hard switching PWM converter and soft switching resonant converter. Fig.1 Switching Transition Losses in PWM and Resonant Converters Therefore to realize high switching frequencies in converters, with the miniaturization trends in electronics, the aforementioned shortcoming are minimized if each switch in the converter changes its status (from On to OFF or vice versa) when the voltage across it and/or the current through it is zero at the switching instant. The converter topologies and the switching strategies, which result in zero-voltage and/or in zerocurrent switching, are called Resonant Converter. Since most of these topologies (but not all) require some form of L-C resonance, these are broadly classified as Resonant Converters. 3. RESONANT TRANSITION CONVERTERS The resonant transition converters are more recent family of soft switching converters. They combine the low switching loss characteristics of the resonant converters and the constant frequency and low conduction loss characteristics of the PWM converters. They are essentially square wave converters for most of the part, except during the resonant transitions. The resonant transition is achieved relying mainly on the parasitic components like the magnetizing and the leakage inductance of the transformer and the output capacitance of the MOSFET, and by adopting suitable switching strategies. Fig 2 shows the circuit configuration for resonant transition converter in halfbridge. The pulse width modulated half-bridge converter, which has been chosen for the study and implementation for the work. Belongs to the class of resonant transition converters Some of the salient features of resonant transition converter are as follows Zero Voltage switching for all the switches in half-bridge and full-bridge. Constant Frequency Operation Peak Voltage/Current stresses of the device are limited as the voltage and currents are almost a square wave except for resonant transition period. Parasitic inductance of the transformer and the parasitic capacitance of the MOSFET in the circuit may be used as the resonant elements. There is higher overall efficiency at given power level, mainly due to the absence of switching losses at the power switches and rectifiers. Lower loss in turn means smaller heat sinks, hence reduction in size and weight of overall package. 4. DESIGN AND DEVELOPMENT Resonant transition converter [3] relies mainly on the parasitic elements of the transformer and the MOSFETs to achieve loss less transition. Hence these elements have to be considered in the analysis and design of the converter. Fig2 shows the schematic of pulse width modulated converter used for analysis and simulation. As may be seen, the circuit includes the parasitic elements like the output capacitance (C1 and C2) of the MOSFETs and the magnetizing (Lm) and leakage inductance (Llk) of the transformer. M1 M2 D1" D2" C2 C1 Vdc Ipri +Vdc/2 C1' +Vdc/2 C2' D1' R1' D2' R2' A B Ipri n : 1 INVERTER TRANSFORMER RECTIFIER FILTER LOAD Fig 2 Resonant transition converter in half-bridge D1 D2 D4 D3 Cf1 Lf Io Cf2 Rload Zero voltage switching demands that, before a MOSFET is switched ON, its output capacitance will be completely discharged. This discharge is accomplished by the energy stored in the magnetizing and the leakage inductances. Therefore these parameters are crucial for the ZVS view point and have to be considered in the analysis. Design specifications include:3w, multiple outputs of 18V and ±15V, volume of less then 1.5 (W)*2.5 (L)*1.2 (H), switching frequency of 5kHz, operable temperature limits - 4 to +8 and an input voltage of 22V DC. Transformer ratings 135V/18V,15V, transformer leakage inductance of 1µH and additional inductance of 3µH. During simulation it is seen that the primary current of 332mA (and 3mA calculated) for the given full load was in- sufficient to discharge the parasitic capacitance across the MOSFET, and hence suddenly discharging through the MOSFET to be turned on next. Thus achieving hard switching.[5] This is shown in fig.3. Volume: 3 Special Issue: 3 May-214 NCRIET-214, Available @ http://www.ijret.org 129

Hence the minimum current required to obtain ZVS or to charge/discharge the capacitance is the important factor to be considered. Moreover the leakage inductance of the transformer around 1 H was too low to provide the desired current to charge/discharge the MOSFET capacitance to achieve zero voltage transition. 5. SIMULATION AND EXPERIMENTAL RESULTS The designed is simulated using ORCAD 1.. Simulation results and experimental results are presented for the following operating point Input Voltage, V DC = 22V Output Voltage, V o = 18V, 15V Output Power, P o = 3W It is seen that both the results match to large extent. The comparison is given in the following table. The experimental and simulation results are tabulated as below. Table1 Shows the voltages, currents and losses for M1& M2 Fig 3 Shows the primary current in sufficient to discharge the parasitic capacitance and hence discharging through the MOSFET achieving hard switching Vdc Parameters Simulated Experimental V M1 27V 268V I M1 1.3A 1.32A P M1 1.1W 2.13W V M2 27V 268V I M2 1.76A 1.41A P M2 2.3W 3.6W Table 2 Shows the input and output voltages and currents for the converter E Cex1 Cex2 Lex M2 M1 A D1 Llk D2 C1' B C2' Parameters Simulated Experimental V bdg 135V 14V I bdg 4mA 5mA P bdg 38.18W 49W V o 16V 18.2V I o 1.4A 1.5A P o 22.4W 28W The efficiency of the converter is found to be 82%. The estimated power density value was 6W/cm 3 and the experimental value is 5W/cm 3. Fig 4 schematic of the modified circuit to aid ZVS In Fig 4,Lex is the external inductor added to aid ZVS [7][8].The ideal design to restore ZVS is: Iex (peak) = maximum current during turn off plus the minimum current needed to discharge the capacitor across the switch coming into the conduction and the charge the one across the switch tuning off. Volume: 3 Special Issue: 3 May-214 NCRIET-214, Available @ http://www.ijret.org 13

Fig5: Shows the gate voltage s V g (M1) & V g (M2) for the M1&M2.The bridge voltage and current V bdg and I bdg for V dc =27V Fig8: Shows current due to external inductor I ex and the bridge voltage and current V bdg, I bdg. Fig6: Shows the zero voltage switching at transition from ON to OFF within the given T delay Fig 7: Shows the switch voltage V DS and drain current I D for M1&M2. It also shows the current through the diode I diode achieving zero voltage turn on. Fig9: Shows the turn on and turn off losses for MOSFETs M1 and M2.Zero turn on losses and some finite turn off losses. 6. CONCLUTIONS In switch mode power supplies employing hard switching the controllable switches are subjected to high switching stress as the switches have to turn on and turn off the entire load current during switching. Soft switching would become necessary if higher power conversion density is demanded by the application. This is more important when the power device have to switch large currents at high voltage levels. Soft switching is only the option in future for operating at higher frequency and minimum losses for the converter. The Zero Voltage Transition Converter taken up for development has potential advantages catering to many applications. The methodology gives zero voltage switching, without compromising on the device stresses Volume: 3 Special Issue: 3 May-214 NCRIET-214, Available @ http://www.ijret.org 131

or the conduction losses. Provides constant frequency operation and possibility of achieving ZVS using the parasitic elements alone The developed converter in ZVT topology exhibited the low loss switching characteristics of the resonant converter. REFERENCES [1] Fred Lee, Kwang-Hwa Liu, Zero Voltage Switching Techniques in DC/DC Converter IEEE Transactions on Power Electronics, Vol 5, July 199. [2] A. Rajapandian, V. Ramanarayanan, A Constant Frequency Resonant Transition Converter:, Jourrnal Indian Institute of Science, May-June, 1996, pp363-377. [3] B.Swaminathan, V. Ramanarayanan, A Novel Resonant Transition Half Bridge Converter, Indian Institute of Sciences, Bangalore. [4] David J. Hamo, A 5W, 5kHz, Full bridge, Phase Shift, ZVS isolated DC to DC converter using HIP481A, Application note, Harris Semiconductor, No. AN956, April 1995. [5] A. I. Pressman, Switching Power Supply Design, McGraw Hill Inc, 2nd edition, 1998. [6] History and Develpoment of SMPS, PRE-1987, www.steve-w.discon.co.uk [7] Phase Shift Zero Zoltage Transition Design Considerations and the UC3875 PWM controller, www.focus.ti.com [8] Zero Voltage Switching Resonant Converter, www.powerdesigners.com Volume: 3 Special Issue: 3 May-214 NCRIET-214, Available @ http://www.ijret.org 132