Keysight Technologies Impedance Measurements

Similar documents
Keysight Technologies

Keysight Technologies

Introduction. Part 1. Introduction...2

Keysight Technologies Migrating Balanced Measurements from the

Keysight Technologies 8490G Coaxial Attenuators. Technical Overview

Keysight Technologies Using a Network and Impedance Analyzer to Evaluate MHz RFID Tags and Readers/Writers

Keysight Technologies Improving the Test Efficiency of MEMS Capacitive Sensors Using the E4980A Precision LCR Meter.

Keysight Technologies Improving Test Efficiency of MEMS Electrostatic Actuators Using the E4980A Precision LCR Meter.

Keysight E5063A ENA Vector Network Analyzer

Keysight Technologies MEMS On-wafer Evaluation in Mass Production

Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors. Demo Guide

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note

Keysight Technologies Accurate NBTI Characterization Using Timing-on-the-fly Sampling Mode. Application Note

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level

Keysight Technologies Power of Impedance Analyzer

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview

Keysight Technologies Measuring Group Delay of Frequency Converters with Embedded Local Oscillators. Application Note

Keysight N9311X RF and Microwave Accessory Kit for Low-cost Handheld and Benchtop Solutions. Technical Overview

Keysight Technologies Making Field Effect Transistor Characterization Using SMU

Keysight Technologies Measuring Low Current Consumption with a Digital Multimeter

Keysight Technologies Precise Low Resistance Measurements Using the B2961A and 34420A

Keysight HMMC-1002 DC 50 GHz Variable Attenuator

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight E5063A ENA Series Network Analyzer

Keysight Technologies N6850A Broadband Omnidirectional Antenna. Data Sheet

Keysight Technologies 423B, 8470B, 8472B, 8473B/C Low Barrier Schottky Diode Detectors

Keysight 8474B/C/E Planar-Doped Barrier Diode Detectors 0.01 to 50 GHz. Data Sheet

Keysight Technologies Wide Range DC Current Biased Inductance Measurement

Keysight Technologies HMMC GHz High-Gain Amplifier

Keysight Technologies P9400A/C Solid State PIN Diode Transfer Switches

Keysight M9485A PXIe Multiport Vector Network Analyzer

Keysight Technologies N4985A System Amplifiers

Keysight Technologies Electronic Calibration (ECal) Modules for Vector Network Analyzers

Keysight Technologies Making Simpler DC Power Measurements with a Digital Multimeter

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V

Keysight Technologies Simultaneous Measurements with a Digital Multimeter

Keysight N8836A PAM-4 Measurement Application For Infiniium S-Series, 90000A, V-Series, X-Series, Q-Series, and Z-Series Oscilloscopes

Keysight Technologies N2792A/N2818A 200 MHz and N2793A/N2819A 800 MHz Differential Probes. Data Sheet

Keysight Technologies N9310A RF Signal Generator

Keysight Technologies N4983A Multiplexer and Demultiplexer. Data Sheet

Keysight Redefines 50 GHz Portability. Get a $30k Credit When You Move Up to FieldFox

Keysight Technologies USB Preamplifiers

Introduction. Part 1. Introduction...2

Keysight DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option

Keysight Technologies How to Easily Create an Arbitrary Waveform Without Programming. Application Note

Keysight U1882B Measurement Application for Infiniium Oscilloscopes. Data Sheet

Keysight Technologies Solid State Switches. Application Note

Keysight Technologies Using a Scope s Segmented Memory to Capture Signals More Efficiently. Application Note

Keysight N9310A RF Signal Generator

Keysight Technologies Waveguide Power Sensors. Data Sheet

Keysight Technologies Migrating from the 4268A/4288A Capacitance Meter to the E4981A Capacitance Meter. Technical Overview

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief

Keysight Technologies Split Post Dielectric Resonators for Dielectric Measurements of Substrates. Application Note

Keysight Technologies, Inc. UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer. Application Note

Keysight Technologies Automated Receiver Sensitivity Measurements Using U8903B. Application Note

Keysight Technologies N9398C/F/G and N9399C/F DC Block. Technical Overview

Keysight Technologies Make Better AC RMS Measurements with Your Digital Multimeter. Application Note

Keysight Quickly Generate Power Transients for Testing Automotive Electronics. Application Note

Keysight Technologies FFT and Pulsed RF Measurements with 3000T X-Series Oscilloscopes. Application Note

Keysight Technologies Understanding the Importance of Maximum Power Point Tracking Efficiency for Solar Inverters.

Keysight M940xA PXIe Optical Extenders for Instrumentation. Data Sheet

Keysight Technologies Active Differential Probes U1818A 100 khz to 7 GHz U1818B 100 khz to 12 GHz. Technical Overview

Keysight Technologies E4980A Precision LCR Meter

Keysight Technologies Using an External Trigger to Generate Pulses with the B2960A

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Keysight Technologies

Keysight E5061B-3L3/3L4/3L5 LF-RF Network Analyzer with Option 005 Impedance Analysis Function. Data Sheet

Keysight Technologies MATLAB Data Analysis Software Packages

Keysight Technologies PXI Vector Network Analyzer Series. Drive down the size of test

Keysight Technologies Accurate Evaluation of MEMS Piezoelectric Sensors and Actuators Using the E4990A Impedance Analyzer.

Keysight Technologies Automotive ECU Transient Testing Using Captured Power System Waveforms. Application Note

Keysight Technologies N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes. Data Sheet

Keysight Technologies Resistance Measurements Using the B2900A Series of SMUs

Keysight Technologies RF & Microwave Attenuators. Performance you can count on

Keysight Technologies VSA Software for Simulation Environments BE/89601 BNE

Keysight Technologies, Inc. Overcome PCB Loss and Deliver a Clean Eye to Your DUT Using Multi-tap De-emphasis

Keysight Technologies Maximizing the Life Span of Your Relays

Keysight Technologies N2750A/51A/52A InfiniiMode Differential Active Probes. Data Sheet

Keysight Technologies N9398C/F/G and N9399C/F DC Block. Technical Overview

Keysight Technologies Achieving Accurate RF and Microwave Power Measurements for Satellite Thermal Vacuum Test. Application Note

Keysight Technologies InfiniiScan Event Identification Software

Keysight Technologies DSOX3PWR/DSOX4PWR/DSOX6PWR Power Measurement Options

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview

Keysight Technologies Overcoming LTE-A RF Test Challenges. Application Note

Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer. Application Note

Keysight Technologies U1210 Series Handheld Clamp Meters

Keysight N8803C CAN, LIN, FlexRay, and CAN-FD Protocol Triggering and Decode Software. Data Sheet

Keysight Technologies Phase Noise X-Series Measurement Application

Keysight Technologies VOR and ILS Radio Navigation Receiver Test Using Option 302 for Keysight Signal Sources. Application Note

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Keysight Technologies High Frequency Probing Solutions for Time and Frequency Domain Applications. Application Note

Keysight Technologies 89601B-SSA/89601BN-SSA Spectrum Analysis VSA Software

Keysight Technologies Triggering on and Decoding the PSI5 Sensor Serial Bus

Keysight Technologies How to Read Your Power Supply s Data Sheet. Application Note

Keysight Technologies How to Select the Right Current Probe. Application Note

Keysight Technologies CAN, LIN and FlexRay Protocol Triggering and Decode for Infiniium 9000 and S-Series Oscilloscopes.

Keysight Technologies Measuring Dielectric Properties Using Keysight s Materials Measurement Solutions

Keysight N2806A Calibration Pulse Generator The world s fastest differential pulse generator. Data Sheet

Keysight Technologies Optimizing VNA Settings for Testing of LTE-A Wireless Components. Application Note

Keysight E5063A ENA Series PCB Analyzer

Transcription:

Keysight Technologies Impedance Measurements Evaluating EMC Components with DC Bias Superimposed Application Note

Introduction Recent developments in semiconductor and communications technologies have accelerated the expansion of digital technology applications to more and more fields including home electronics and automotive parts and accessories. Meanwhile, in order to cope with ever-increasing amounts of data, the demand for higher communication speeds has been increasing daily. In addition, developers are faced with stricter electromagnetic compatible (EMC) and noise control requirements and the increasingly complicated challenge of meeting today s standards and needs for power saving, low voltage design, smaller components, etc. EMC/noise control requirements will continue to become stricter and stricter. Using ferrite beads as an example, this application note gives an overview on how to correctly evaluate EMC components in a way that satisfies these strict requirements. It also introduces various EMC measurement solutions. Table of Contents Introduction.........................................................2 About Ferrite Beads....3 Impedance Measurements with a Vector Network Analyzer...5 E5071C ENA Network Analyzer....6 Sample VBA Program...6 Measurement Steps....7 Fixture Compensation...10 Measurement Results Under Actual Operating Conditions...13 Selecting Bias Tees...14 Summary...16

About Ferrite Beads Figure 1 shows the equivalent circuit of a ferrite bead. Figure 2 shows the frequency characteristics of two different ferrite beads. Unlike ordinary inductors, Ferrite beads have high frequency components that are mainly resistive. Since resistive components absorb noise and turn it into heat, ferrite beads are primarily used to rectify signal waveforms or reduce high frequency noise in power or signal lines. Figure 1. Equivalent circuit of a ferrite bead Impedance (Ω) 1500 1200 900 1600 300 0 1 10 100 1000 Frequency (Hz) Figure 2. Examples of frequency characteristics of ferrite beads When using ferrite beads, you should take the following precautions: 1. Clearly identify the differences in impedance characteristics. The two ferrite beads shown in Figure 2 have different impedance characteristics and therefore their signal rising edges are also different (as shown in Figure 3). Since the signal rising edge differs depending on the impedance characteristics, choosing between different ferrite beads requires careful consideration of not only their noise bandwidth, but also their impedance characteristics. 2. Pay attention to inductance saturation. Generally, core inductors such as ferrite beads have DC current dependencies as shown in Figure 4; the degree of inductance saturation differs depending on what material is used for the core of the component. This causes differences in impedance characteristics. Figure 5 shows how the impedance of a ferrite bead changes when superimposed with different DC currents. These impedance changes may cause a ferrite bead to exhibit a different noise removal effect or signal waveform than simulated. Therefore, to validate the effect of a ferrite bead, you have to identify its characteristics under actual operating conditions. 3

EMC/noise regulations have been expanding to cover ever higher frequencies including the GHz band. In addition, noise margins are decreasing due to a shift toward low voltage designs for electronic devices. Given these trends, there is increasing demand for ferrite beads with high frequency noise control; however, you cannot achieve effective noise control without identifying the impedance characteristics under actual operating conditions. The E5071C ENA network analyzer provides an effective solution for measuring the impedance of EMC components under actual operating conditions. With the E5071C ENA, which can measure up to GHz range, and the application of a DC bias current from an external DC source, measurements of EMC components under actual operating conditions can be achieved. Voltage (V) Sample A Voltage (V) Sample B Time (t) Time (t) Figure 3. Different signal waveform rising edges resulting from different impedance characteristics (rough images) Delta L 0 The higher the DC current, the higher the tendency of inductance saturation Figure 4. Inductance vs. DC bias currents DC bias current Impedance (Ω) 250 0Adc 0.2Adc 0.5Adc 1Adc 200 150 100 50 0 0.0E + 00 5.0E + 08 1.0E + 09 1.5E + 09 2.0E + 09 2.5E + 09 3.0E + 09 Frequency (Hz) Figure 5. Comparison of ferrite bead impedance measurements with different DC bias currents superimposed 4

Impedance Measurements with a Vector Network Analyzer Two common methods used to perform impedance measurements with a vector network analyzer are the reflection method using one port and the shunt/series method using two ports. Figure 6 shows the relationships between the impedance and S parameter for each of the two measuring methods. When the impedance measured (Zx) is in the vicinity of the characteristic impedance (Zo = 50 Ω), the reflection method provides high-sensitivity measurements because the vector voltage ratio significantly changes with a small change in the impedance. However, when the impedance measured is not in the same vicinity as the characteristic impedance, the reflection method is not suitable due to trace noise. The two port method allows you measure impedance over a wide impedance range using shunt/series connections. With the two port method, you can use either S11 or S21 to perform measurements; however, S11 has a more limited noise floor than S21, and it is highly susceptible to VSWR and other factors that exist between the fixture connector and substrate. Because of this, generally S21 is preferred. The S21 shunt connection is suitable for 50 Ω or lower impedances while the S21 series connection is suitable for 50 Ω or higher impedances. Because EMC components span a wide range of impedances depending on their purposes, their impedances must be measured with an adequate combination of S21 shunt/series connections. S parameter [db] 20 Horizontal 0 axis Z[W] 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04 1.E+06 1.E+08-20 S21 shunt -40 S21 series -60-80 -100 S11 series -120-140 -160 Vertical axis [db] Areas affected by trace noise S11 shunt Reflection method Areas affected by noise floor Figure 6. Relationship between impedance (Z) and S parameter (db) values (Reflection) S11 (shunt) S21 (shunt) S11 (series) S21 (series) One-port configuration (reflection) Two-port configuration (shunt/series through) (If Zo at ports 1 and 2 is 50 Ω) Port1 Port2 Port1 Port2 Port1 Port2 Zx G Zx S 11 Zx S 11 S 21 Zx Zo Γ= Zx + Zo 25 Zx S 11 = S Zx + 25 21 = Zx + 25 Zx 100 S 11 = S Zx + 100 21 = Zx + 100 Figure 7. Measuring method and configuration of impedance measurements for a vector network analyzer 5

E5071C ENA Network Analyzer Setup for DC bias superimposed impedance measurements under actual operating conditions Figure 8 shows the basic setup for DC bias superimposed impedance measurements under actual operating conditions using the E5071C ENA network analyzer. In this setup, ports 1 and 2 are each connected with a bias tee. Each bias tee is connected to a DC power source and an electronic load. Ports used for measurement must be connected with bias tees to block DC signals from the analyzer. DC signals go from the DC power source to the bias tee, to the device under test (DUT), to the electronic load. Using an electronic load ensures that the DC bias applied to the DUT can be stably controlled. AC signals output from port 1 pass through the bias tee and the DUT, and are finally received by port 2. When AC signals pass through the DUT, they are superimposed on a DC bias. Bias tee AC Bias tee DC power source DC DUT DC Electronic load Figure 8. Measurement solution based on the E5071C ENA network analyzer Sample VBA Program You can automatically control the system using the sample VBA program for the E5071C with the specified power source and electronic load. The program displays impedance measurement results of the different DC biases. The program works with the E5071C and supports the following power source and electronic load: Keysight Technologies E3633A/E3634A DC power source Keysight Technologies 3300A/E3301A electronic load 6

Measurement Steps 1 2 3 4 5 Before starting the measuring process, copy the following two files into the VBA folder on drive D: Z_DCI.VBA (sample VBA program) ZvsDCI.chm (help file) Then, check the E5071C s Channel/Trace Setup to make sure that 9 channels and 9 traces are enabled. Press the [MacroSetup] button located in the INSTR STATE block on the front panel, and select Load&Run. Select Z_DCI on the menu to open the main screen of the impedance VBA program. Figure 9. Main screen of the sample VBA program for the E5071C To perform measurements using the sample VBA program, follow the steps listed below. The step numbers correspond to the numbers indicated on Figure 9. For detailed descriptions, click the Help button located on the upper right corner of the screen. 1. Set the GPIB addresses of the DC power source and electronic load. Be sure to enter the exact GPIB addresses specified for your DC power source and electronic load. 2. Specify the measurement method. This sample VBA program supports two-port shunt-through and series-through measuring modes. 3. Set the frequency and measurement conditions of the E5071C. On the Sweep Type drop-down list, select whether to sweep the frequency or DC bias current. 7

If you have selected frequency sweep: Click the Sweep Setup radio button. In the Sweep Type drop-down list, select either Lin Freq (linear sweep) or Log Freq (logarithmic sweep). In the Start Frequency and Stop Frequency fields, set the frequency sweep range. In the NOP field, specify the number of measuring points per trace. In the IF Bandwidth field, specify the IF bandwidth. The smaller the value, the more granular the measurements. In the Start Current and Stop Current fields, set the DC bias current to be applied. In the Trace field, specify the number of traces to be displayed. The DC bias current for each trace is automatically determined based on the settings specified in the Start Current and Stop Current fields. For example, if you configure the settings exactly as shown in Figure 10, five traces will be used from 0 A to 2 A, and the program will display the frequency characteristics superimposed with each of 0 A, 0.5 A, 1 A, 1.5 A, and 2 A DC bias currents. In the Current Limit field, specify the maximum allowable DC bias current. If this value is exceeded, the system will immediately terminate the measuring process. Figure 10. Setting up the frequency sweep If you want to sweep the DC bias current. Click the CW radio button. In the Frequency field, specify the fixed frequency value. In the IF Bandwidth field, specify the IF bandwidth. In the Start Frequency and Stop Frequency fields, set the DC bias current sweep range. In the NOP field, specify the number of measuring points. In the Current Limit field, specify the maximum allowable DC bias current. If this value is exceeded, the system will immediately terminate the measuring process. Figure 11. Setting up the DC bias current sweep 1. Select your desired measurement parameters. The following parameters are available: Z, θ, R, X, G, B, Ls, Lp, Cs, Cp, Rs, Rp, Q, D 2. Select Cal from the menu to perform cable and fixture calibration/ compensation. 8

To perform the calibration: Select the Ecal tab on the dialog box as shown in Figure 12. Connect the ECal module and click Ecal. Figure 12: Calibration using Ecal To perform the compensation measurement: Select the Define tab on the dialog box as shown in Figure 13. Enter the defined values of the open and short standards you will use for compensation, and click the Set button. Figure 13: Entering the defined values Then click and open the Compen tab (see Figure 14). Connect the open standard to both ports. Click the PtExt button to perform electrical length compensation. Then click the Open button to perform open compensation. Finally, connect the short standard to both ports, and click the Short button. When you are done, click the Done button. This completes the compensation process. Click the Close button. Figure 14. Electrical length open/short compensation Now the analyzer is ready to perform measurements. Click the Start button on the main menu to start the measuring process. 9

Fixture Compensation This section gives a description of fixture compensation. The fixture actually used for evaluation (Figures 15 and 16) has a pad for SMD placed in the center of the fixture and both ends are connected with SMA connectors. Fixtures have measurement errors resulting from error factors that exist between the calibration plane and the DUT measurement plane, as indicated in Figures 15 and 16. If you only perform a response calibration, you cannot correctly compensate for influences of the fixture because the response calibration does not account for the signal path that exists when a DUT is added. To correctly compensate for any error factors associated with the fixture, you should combine port extension and open/short compensation as outlined in this section. Measurement plane Measurement plane Port extension Port extension Calibration plane Figure 15. Series-through evaluation substrate DUT Calibration plane Measurement plane Port extension Port extension Calibration plane Figure 16. Shunt-through evaluation substrate DUT Calibration plane Figure 17 shows the fixture s error factors expressed by the electrical length and residual impedance. Although the actual measurements are performed using the two-port model, all measurements can be handled the same way as those obtained with the one-port model using an impedance analyzer because they are all expressed as impedances. You can use the port extension method to compensate for the electrical length from the calibration plane. For the fixture s residual impedance, you can use the open/short standards shown in Figures 18 and 19 to determine the admittance in the open state (Y open) and the impedance in the shorted state (Z short). Then, you can use Equation 1 on page 9 to determine the DUT s actual impedance by eliminating the fixture s residual impedance. Calibration plane Compensating for electrical length Fixture's residual impedance Dq Zm Zs Yo DUT Zdut Figure 17. Fixture s error factors Belongs to the fixture 10

Zm - Zs Zdut = 1 - (Zm - Zs)Yo Equation 1. Compensation for errors using an open/short standard Figure 18. Standard for series-through evaluation Open standard Short standard Figure 19. Standard for shunt-through evaluation Open standard Short standard Figure 20 compares two sets of measurement results. One set was obtained by using the E5071C (with an IF bandwidth of 1 khz) in conjunction with the fixture-based shunt-through and series-through connections and error compensation techniques described in this section, and the other by using the E4991A impedance analyzer in conjunction with a 16197A bottom electrode SMD test fixture. There is some error due to differences in fixture structure, but both sets of measurement results are almost the same. Also, even with DUTs whose impedances are 50 Ω or lower, good series-through correlations were attained by using a smaller IF bandwidth. However, the shunt-through connection has better measurement repeatability and is more suitable for measuring micro impedances of 0.1 Ω or lower (Figure 21). It is obvious that performing fixture compensation ensures good correlations between the measurements obtained using a two-port configuration with the E5071C network analyzer and those obtained using the E4991A impedance analyzer. Impedance (Ω) 50 E4991A E5071C shunt-through series-through 40 30 20 10 0 1.0E + 06 1.0E + 07 1.0E + 08 1.0E + 09 1.0E + 10 Frequency (Hz) Figure 20. Comparison of ferrite bead measurements obtained using the E4991A and those obtained using the E5071C in the two-port configuration Impedance (Ω) 2.00E - 01 1.80E - 01 1.60E - 01 1.40E - 01 1.20E - 01 1.00E - 01 8.00E - 02 1.00E + 06 Shunt-through Series-through 1.20E + 06 1.40E + 06 1.60E + 06 1.80E + 06 2.00E + 06 Frequency (Hz) Figure 21. Comparison of shunt-through and series-through measurement repeatabilities 11

The rest of this section describes the benefits provided by compensation. Figure 22 compares measurement results (up to 6 GHz) obtained with and without short standard compensation. In the measurement results obtained without compensation, the impedance increases as the frequency increases because the fixture s inductance is not compensated for as residue in the shorted state. Figure 23 compares results of ferrite bead measurements (up to 6 GHz) obtained with and without compensation. In the measurement results without compensation, the DUT s impedance actually includes, as an offset, the fixture s residual impedance in the shorted state. Without compensation Impedance (Ω) With compensation Frequency (Hz) Figure 22. Comparison of measurement results obtained with and without short standard compensation Without compensation Impedance (Ω) With compensation Frequency (Hz) Figure 23. Comparison of ferrite bead measurement results 12

Measurement Results Under Actual Operating Conditions Figure 24 shows the results of a frequency sweep performed with a DC bias current applied to a ferrite bead in increments of 0.2 A. As shown, the impedance parameter changes as the DC bias current increases. You can also select a different set of measurement parameters. Figure 24 shows how the inductance (Ls) value changes during frequency sweep performed with a DC bias current applied in increments of 0.2 A. Figure 25 shows the results of sweeping the DC bias current with a fixed frequency. You can evaluate the saturation characteristics of a ferrite bead by sweeping the DC bias current and verifying the reactance (X) and inductance (Ls). Z R X Figure 24. Frequency characteristics of a ferrite bead measured by changing the DC bias current in increments of 0.2 A (Z, R, X) Ls Figure 25. Frequency characteristics of a ferrite bead measured by changing the DC bias current in increments of 0.2 A (Ls) 13

Z R X Figure 26. Ferrite bead measurement results obtained by sweeping the DC bias current with the frequency fixed Selecting Bias Tees When selecting bias tees, consider the following parameters based on the device measurement conditions. 1. Bias-tee s frequency characteristics 2. Bias-tee s DC current dependency 3. Back electromotive force and analyzer protection This section describes how to verify each of the above items using the bias tees actually used for the measurements in this application note. Table 1 defines the specifications of a bias tee. Frequency range (IL 10 db) (IL 15 db) Maximum DC current Maximum DC voltage Inductance 0.3 2.8 GHz 0.45 2.6 GHz 7 A 100 V 51 nh Table 1. Bias tee specifications 14

Bias tee s frequency characteristics To identify the bias-tee frequency range suitable for your measurements, it is important to know, not only the 3 db cutoff frequency, but also the inductance region. Figure 27 compares bias-tee impedances and insertion losses. The inductance component of a bias tee contains fewer losses because the inductance provides an effect of blocking AC signal leakage to the bias tee s DC input terminal (see Figure 28). The linear inductance characteristics within the frequency range, included in the specifications above, are suitable for device measurements. Impedance (Z) Spec range Insertion losses(s21) Cutoff frequencies ( -3dB) Figure 27. Frequency characteristics of a bias tee AC Figure 28. Bias tee DC DC & AC Bias-tee s DC current dependency One of the prerequisites for correctly evaluating the DC current dependency of a device is that the bias tee (Figure 28) has a low enough DC current dependency under the specific measuring conditions. Figure 29 shows impedance representations of a bias tee s frequency characteristics measured by superimposing 0 A, 1 A, and 7 A DC bias currents. The fact that there are almost no changes in impedance within the frequency range included in the above specifications means that this bias tee has a small DC current dependency and is suitable for device evaluation. 0A 1A Impedance (Ω) 7A Figure 29. Bias tee s DC current dependency 15 Frequency (Hz)

Back electromotive force and analyzer protection When an instantaneous interruption of the analyzer occurs or when the device is detached during a measurement process, a back electromotive force can be generated that may result in damage to the analyzer. For example, if a 51 nh inductor is contained in the bias tee and 7A of DC current is applied to it, the inductor can generate a back electromotive force equivalent to 1.25 x 10-6 (V) (see Equation 2 below). Similarly, an inductor contained in a device can generate a back electromotive force. You should check the back electromotive forces and voltage endurance specifications of the bias tee and device in advance. Also, avoid any operations that can cause an instantaneous interruption, and be sure to set the DC bias current down to 0 A before turning off the power to the analyzer. Back electromotive force (V) = LI 2 /2 Equation 2. Calculating the back electromotive force Summary EMC/noise control requirements will become stricter and stricter. Using ferrite beads as an example, this application note has given an overview on how to correctly evaluate EMC (electromagnetic compatible) components to satisfy these strict requirements. It also introduced you to some other available measurement solutions. The impedance characteristics of EMC components change when the DC bias changes; therefore, you cannot achieve effective EMC/noise control without evaluations under actual operating conditions. Also, given the accelerating trends towards higher speeds, it is now necessary to perform impedance evaluations in the GHz band. Performing EMC component evaluations using a vector network analyzer under actual operating conditions is a very effective solution to these issues. The sample VBA program for the E5071C network analyzer allows you to automatically control the power source and electronic load and to easily perform impedance evaluations of EMC components under actual operating conditions. 16

17 Keysight Impedance Measurements Evaluating EMC Components with DC Bias Superimposed Application Note Evolving Since 1939 Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight. For more information on Keysight Technologies products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus Americas Canada (877) 894 4414 Brazil 55 11 3351 7010 Mexico 001 800 254 2440 United States (800) 829 4444 mykeysight www.keysight.com/find/mykeysight A personalized view into the information most relevant to you. http://www.keysight.com/find/emt_product_registration Register your products to get up-to-date product information and find warranty information. Keysight Services www.keysight.com/find/service Keysight Services can help from acquisition to renewal across your instrument s lifecycle. Our comprehensive service offerings onestop calibration, repair, asset management, technology refresh, consulting, training and more helps you improve product quality and lower costs. Keysight Assurance Plans www.keysight.com/find/assuranceplans Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements. Keysight Channel Partners www.keysight.com/find/channelpartners Get the best of both worlds: Keysight s measurement expertise and product breadth, combined with channel partner convenience. Asia Pacific Australia 1 800 629 485 China 800 810 0189 Hong Kong 800 938 693 India 1 800 11 2626 Japan 0120 (421) 345 Korea 080 769 0800 Malaysia 1 800 888 848 Singapore 1 800 375 8100 Taiwan 0800 047 866 Other AP Countries (65) 6375 8100 Europe & Middle East Austria 0800 001122 Belgium 0800 58580 Finland 0800 523252 France 0805 980333 Germany 0800 6270999 Ireland 1800 832700 Israel 1 809 343051 Italy 800 599100 Luxembourg +32 800 58580 Netherlands 0800 0233200 Russia 8800 5009286 Spain 800 000154 Sweden 0200 882255 Switzerland 0800 805353 Opt. 1 (DE) Opt. 2 (FR) Opt. 3 (IT) United Kingdom 0800 0260637 For other unlisted countries: www.keysight.com/find/contactus (BP-9-7-17) www.keysight.com/find/ena DEKRA Certified ISO9001 Quality Management System www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System This information is subject to change without notice. Keysight Technologies, 2017 Published in USA, December 2, 2017 5989-9887EN www.keysight.com