RoHS compliant 1310 nm Single-mode Transceiver (1000BASE-LX) 2 5, LC Duplex Connector, 3.3 V Gbd Fiber Channel/1.25 Gigabit Ethernet

Similar documents
RoHS compliant 850 nm Multi-mode Transceiver (1000BASE-SX) 2 5, LC Duplex Connector, 3.3 V Gbd Fiber Channel/1.25 Gigabit Ethernet

RoHS compliant 850 nm Multi-mode Transceiver (1000BASE-SX) 1 9, SC Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

RoHS compliant 1310 nm Single-mode Transceiver (10km) 1 9, ST Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

1550 nm Single-mode Transceiver (80km) 1 9, SC Duplex Connector, 3.3 V 622 Mbps ATM/SONET OC-12/SDH STM-4

RoHS Compliant 1310 nm Single-mode Transceiver (L1.1) 2 5, LC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

RoHS compliant 1310 nm multi-mode Transceiver (2 km) 1x9, SC Duplex Connector, 5.0 V 155 Mbps ATM/ Fast Ethernet

RoHS compliant 1310 nm Single-mode Transceiver (L1.1) 1x9, ST Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet.

RoHS compliant 1310 nm Single-mode Transceiver (S1.1, 19dB margin) 1x9, SC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

RoHS Compliant TX-1310/RX-1550 nm Single-mode Bi-directional 2

VOLTAGE TEMPERATURE LD TYPE

Features. PART NUMBER TX RX IN/OUT SD Burst Control RX 1550nm Input TEMPERATURE LD TYPE

PARAMETER SYMBOL MIN MAX UNITS NOTE

ACE PLUS CORP. Features. Ordering Information

PART NUMBER TX RX VOLTAGE TEMPERATURE. LSB2-A3M-PC-N nm 1310 nm 3.3 V 0 C to 70 C LSB2-A3M-PI-N nm 1310 nm 3.

Features. Description. PART NUMBER TX RX VOLTAGE TEMPERATURE KSB2-A3S-PC-N nm 1310 nm 3.3 V 0 C to 70 C

PARAMETER SYMBOL MIN MAX UNITS NOTE

Features. Ordering Information

RoHS compliant 850 nm Multi-mode Transceiver Gigabit Interface Converter (GBIC), 3.3V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet.

RoHS Compliant 1310 nm Multi-mode Transceiver 2 5, LC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

I0AOM nm Single-mode Transceiver, (1000Base-LX) Small Form Pluggable (SFP), 3.3V Gbd Fiber Channel/1.25 Gigabit Ethernet.

PART NUMBER INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

RoHS compliant 1550 nm Single-mode Transceiver, 24dB margin Small Form Pluggable (SFP), 3.3V Gbd Fiber Channel/1.25 Gigabit Ethernet.

Features. Ordering Information

RoHS compliant 1310 nm Multi-mode Transceiver (2km) Small Form Pluggable (SFP), 3.3V 155 Mbps ATM/125 Mbps Fast Ethernet. Features.

Features. Application

PART NUMBER WAVELENGTH INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

RoHS compliant TX-1550/RX-1310 nm Single-mode Bi-directional SFP SC Simplex Connector (12dB margin) Gbd Fiber Channel/1.25 Gigabit Ethernet

PART NUMBER INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

PART NUMBER TX/RX INPUT/OUTPUT SIGNAL DETECT TEMPERATURE LD

PART NUMBER TX/RX INPUT/OUTPUT SIGNAL DETECT TEMPERATURE LD

OP6C-C20-yy-C (1470nm~1610nm) Datasheet

PROLABS GLC-SX-MM-C 1.25GBd SFP (Small Form Pluggable) Short Wavelength (850nm) Transceiver

SPM-3102WG / SPM-3102BWG / SPM-3102AWG (RoHS Compliant) 3.3V / 1310 nm / 125 Mbps Digital Diagnostic LC SFP MULTI-MODE TRANSCEIVER

1.25 Gigabit Ethernet-Multimode Transceiver

OP6C-M02-13-x Datasheet

SPB-3680LWG / SPB-3680BLWG / SPB-3680ALWG 1310 nm TX / 1550 nm RX, 3.3V / 155 Mbps Digital Diagnostic Single-Fiber SFP Transceiver

SPB-7920WG / SPB-7920BWG / SPB-7920AWG (SC BIDI SFP)

PROLABS GLC-LH-SM-C 1.25GBd SFP (Small Form Pluggable) Long Wavelength (1310nm) Transceiver

Multi-mode 155Mbps Bi-Directional Single Fiber 2x5 SFF Optical Transceiver

V23870-A211x-xx00 (*) Bi-Directional Pigtail SFF Transceiver 155 Mb/s, 1310 nm Tx / 1310 nm Rx

SO-SFP-1000BASE-ZXD-I

TRS-3050G / TRS-3050TG / TRS-3050FG / TRS-3050AG / TRS-3050ATG / TRS-3050AFG. 3.3V / 1310 nm / 155 Mbps RoHS Compliant Optical Single-Mode Transceiver

SPB-9640G / SPB-9640BG / SPB-9640AG (SC BIDI SFP)

PROLABS AJ715A-C 4GBd SFP (Small Form Pluggable) Short Wavelength (850nm) Transceiver

PROLABS GLC-SX-MMD-C 1.25GBd SFP (Small Form Pluggable) Short Wavelength (850nm) Transceiver

ROHS Compliant MM SFP Transceiver 1.25Gb Gigabit Ethernet

TRS-5020G / TRS-5020TG / TRS-5020FG / TRS-5020CG / TRS-5020CTG / TRS-5020CFG. 5V / 1310 nm / 622 Mbps RoHS Compliant Optical Single-Mode Transceiver

Singlemode 1.25Gbps Bi-Directional Single Fiber Optical Transceiver

ProLabs LX-SFP-1G-C 1.25GBd SFP (Small Form Pluggable) Long Wavelength (1310nm) Transceiver

OP6C-W10-B9-x Datasheet

1.25GBd SFP (Small Form Pluggable) Long Wavelength (1550nm) Transceiver

TR1-M4-2023M 1X9 Dual Fiber Fast Ethernet 100 Mb / s 1310 nm Tx / Rx

155Mbps 1x9 SC/ST Duplex Optical Transceiver Module for Fast Ethernet, ATM, SONET/SDH STM-1/OC-3

OP6A-SC0-15-x Datasheet

Features: Compliance: Applications. Warranty: MGBS-GLX10-GT 1 Port Mini GBIC LX SMF Transceiver Amer Networks Compatible

3.3V / 1310 nm / 1.25 Gbps Digital Diagnostic LC SFP SINGLE-MODE TRANSCEIVER

ProLabs ZX-SFP-CWDM-XXXX-C 1.25GBd SFP (Small Form Pluggable) CWDM (1470nm 1610nm) Transceiver 23dB Margin

Speed (Gb/s) (dbm) SPL-94B73B-WG B DFB 5 / / / 70 SC SFP with DMI Yes

DATA SHEET: Transceivers

Parameter Symbol Min Typ Max Unit Remarks Data Rate DR 1.25 GBd IEEE Bit Error Rate BER Input Voltage V CC

ProLabs ZX-SFP-CWDM-XXXX-40KM-C 1.25GBd SFP (Small Form Pluggable) CWDM (1470nm 1610nm) Transceiver 20dB Margin

10GBd SFP+ Short Wavelength (850nm) Transceiver

155 Mb/s ATM Multi-mode Transceiver

SRX-SFPP-10G-SR-ET-GT

PRODUCT FEATURES APPLICATIONS. Pin Assignment: 1 Gigabit Long-Wavelength SFP Transceiver SFP-SX-MM

AXGE Gbps Single-mode 1310nm, SFP Transceiver

GP-8524-S5x(D) 1.25Gbps SFP Optical Transceiver, 550m Reach

Features: Compliance: Applications. Warranty: WS-G5484-GT 1000Base-SX GBIC MMF Cisco Compatible

Single-mode 1.25Gbps 2X10 SFF Transceiver

HT201-24D083M Gbps 850nm SFP Optical Transceiver, 550m Reach

T S P - F x A A 1 - M 2 1

Data Sheet. AFBR-59E4APZ Multimode Small Form Factor (SFF) Transceiver for Fast Ethernet, with LC connector. Description. Features.

SFP-1.25G-LX 1.25Gbps SFP Optical Transceiver, 10KM Reach

RoHS Compliant 2x5 Small Form Factor Transceiver for Gigabit Ethernet

1.25Gbps Single Fiber Bi-directional SFP, ONU Transceiver

OP6E-C26-yy-CM (1270nm~1450nm) Datasheet

SFP-7020-WB 1.25Gbps SFP Bi-Directional Transceiver, 20km Reach 1550nm TX / 1310 nm RX

3CP-485L1MN-SX 1.25Gbps SFP Optical Transceiver, 550m Reach

SFF Series. EOLF Series. Features. Applications. Ordering Information. Multi-Mode 850nm 1250Mbps Duplex SFF Transceiver RoHS6 Compliant

3.3V / 1550 nm / 1.25 Gbps Digital Diagnostic LC SFP SINGLE-MODE TRANSCEIVER

1.25Gbps SFP Optical Transceiver, 550m Reach

PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

10.3 Gb/s / 70 km / 1310 nm Digital Diagnostic SFP+ LC SINGLE-MODE TRANSCEIVER

GLC LH SM. 1.25Gbps SFP Optical Transceiver, 20km Reach

Single Mode 1X9 Dual ST Transceiver 155MBs 5V. Applications Fiberoptic communications systems Networking Digital and Analog Signal transmission

GPON ONU SFF 2X10 GNUF-3412S-B2CDA

1.25Gbps SFP Optical Transceiver, 550m Reach

PROLABS GP-10GSFP-1S-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

DATASHEET 4.1. SFP, 100Mbps-2.7Gbps, Multirate, 1310nm, SM, DDM, 8dB, 2km, ind.temp.

PROLABS SFP-10G-LR-C 10GBd SFP+ LR Transceiver

Features: Compliance: Applications. Warranty: NTTP03CF-GT OC-48/STM-16 IR1/S nm XCT Enhanced SFP Module Nortel Compatible

Features: Compliance: Applications. Warranty: E1MG-CWDM GT CWDM SFP Optic, 80KM, 1550nm, LC Connector Brocade Compatible

PROLABS DS-SFP-FC8G-LW-C 8GBd Long Wavelength SFP+ Transceiver

Parameter Symbol Min Typ Max Unit Remarks Data Rate DR GBd IEEE 802.3ae Bit Error Rate BER Input Voltage V CC

PROLABS EX-SFP-10GE-LR-C

Multi-rate Gigabit Ethernet & Fibre Channel SFP Transceivers with Digital Diagnostics

SFF Series EOLF Series

Wavelength (nm) (m) ( o C) SPM-2100AWG 10.3 SR / SW 300 / 82 / 33* 850 VCSEL SFP+ with DMI -40 to 85 Yes

DTR-xxx-3.3-SM-T. 3.3 Volt Single Mode Transceivers (1x9 pin-out) ! Single +3.3 V supply & LV-PECL data interface. ! Eye Safe (Class I Laser Safety)

10GBd SFP+ LR Long Wavelength (1310nm) Transceiver

Transcription:

Features RoHS compliant Compliant with IEEE 802.3z Gigabit Ethernet standard Compliant with Fiber Channel standard Industry standard 2 5 footprint LC duplex connector Single power supply 3.3V Compatible with solder and aqueous wash processes Class 1 laser product complies with EN 60825-1 Ordering Information PART NUMBER INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE LS34-C3S-TC-B AC/AC LVTTL 3.3V 0 C to 70 C LS34-C3S-TI-B AC/AC LVTTL 3.3V -40 C to 85 C Absolute Maximum Ratings PARAMETER SYMBOL MIN MAX UNITS NOTE Storage Temperature T S 40 85 C Supply Voltage Vcc 0.5 4.0 V Input Voltage V IN 0.5 Vcc V Operating Current I OP --- 400 ma Soldering Temperature T SOLD --- 260 C 10 seconds on leads Page 1 of 9

Operating Environment PARAMETER SYMBOL MIN MAX UNITS NOTE Case Operating Temperature T C 0 70-40 85 C Supply Voltage Vcc 3.1 3.5 V Supply Current Icc --- 200 ma Transmitter Electro-optical Characteristics Vcc = 3.1 V to 3.5 V, T C = 0 C to 70 C (-40 C to 85 C) Output Optical Power 9/125 µm fiber PARAMETER SYMBOL MIN TYP. MAX UNITS NOTE Pout 9.5 --- 3 dbm Average Extinction Ratio ER 9 --- --- db Center Wavelength λ C 1270 1310 1355 nm Spectral Width (RMS) λ --- --- 3.0 nm Rise/Fall Time (20 80%) T r, f --- --- 260 ps Relative Intensity Noise RIN --- --- 117 db/hz Total Jitter TJ --- --- 227 ps Output Eye Compliant with IEEE802.3z Max. P out TX-DISABLE Asserted P OFF --- --- 45 dbm Disable input voltage- High T dis-h 2.2 --- --- V Disable input voltage- Low T dis-l --- --- 0.6 V Transmitter Data Input Differential Voltage V DIFF 0.4 --- 2.0 V Page 2 of 9

Receiver electro-optical characteristics Vcc = 3.1 V to 3.5 V, T C = 0 C to 70 C (-40 C to 85 C) PARAMETER SYMBOL MIN TYP. MAX UNITS NOTE Optical Input Power-maximum P IN 3 --- --- dbm BER < 10 12 Optical Input Power-minimum (Sensitivity) P IN --- --- 20 dbm BER < 10 12 Operating Center wavelength λ C 1260 --- 1610 nm Optical Return Loss ORL 12 --- --- db Signal Detect-Asserted P A --- --- 20 dbm Signal Detect-Deasserted P D 35 --- --- dbm Signal Detect-Hysteresis P A P D 1.0 --- --- db Signal Detect Voltage -High V OH 2.4 --- Vcc V Signal Detect Voltage -Low V OL 0 --- 0.5 V Data Output Rise, Fall Time (20 80%) T r, f --- --- 0.35 ns Data Output Differential Voltage V DIFF 0.5 --- 1.8 V Page 3 of 9

Block Diagram of Transceiver DATA DATA/ ELECTRICAL SUBASSEMBLY POST AMPLIFIER IC RRE- AMPLIFIER IC PIN PHOTODIODE SIGNAL DETECT OPTICAL SUB- ASSEMBLIES DUPLEX SC RECEPTACLE DATA DATA/ TX Dis LASER DRIVER IC LASER TOP VIEW Transmitter Section The transmitter section consists of a 1310 nm laser in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current. Receiver Section The receiver utilizes a MSM detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection. Receiver Signal Detect Signal Detect is a basic fiber failure indicator. This is a single-ended LVTTL output. As the input optical power is decreased, Signal Detect will switch from high to low (deassert point) somewhere between sensitivity and the no light input level. As the input optical power is increased from very low levels, Signal Detect will switch back from low to high (assert point). The assert level will be at least 1.0 db higher than the deassert level. Page 4 of 9

Connection Diagram Pin-Out 5 RD+ 4 RD TX V CCT GND 6 7 3 SD TX DIS 8 2 V CCR TD+ 9 1 RX GND TD 10 TOP VIEW Case Case PIN SYMBOL DESCRIPTION 1 RX GND 2 V CCR 3 SD 4 RD 5 RD+ 6 V CCT 7 TX GND 8 TX DIS 9 TD+ 10 TD Receiver Signal Ground. Directly connect this pin to the receiver ground plane. Receiver Power Supply Provide +3.3 Vdc via the recommended receiver power supply filter circuit. Locate the power supply filter circuit as close as possible to the V CCR pin. Signal Detect. Normal optical input levels to the receiver result in a logic 1 output, V OH, asserted. Low input optical levels to the receiver result in a fault condition indicated by a logic 0 output V OL, deasserted Signal Detect is a single-ended LVTTLoutput. Receiver Data Output-Bar Internally ac coupled (100nF). Terminate this differential data output with a 50Ω line and a 50Ω load at the follow-on device (See recommended circuit schematic) Receiver Data Output Internally ac coupled (100nF). Terminate this differential data output with a 50Ω line and a 50Ω load at the follow-on device (See recommended circuit schematic) Transmitter Power Supply. Provide +3.3 Vdc via the recommended transmitter power supply filter circuit. Locate the power supply filter circuit as close as possible to the V CCT pin. Transmitter Signal Ground. Directly connect this pin to the transmitter signal ground plane. Directly connect this pin to the transmitter ground plane. Transmitter Disable. Connect this pin to +3.3V TTL logic high 1 to disable transmitter. To enable module connect to TTL logic low 0 or open. Transmitter Data In. Requires an ac coupled input. The input stage is internally biased and 50Ω terminated. (See recommended circuit schematic) Transmitter Data In-Bar. Requires an ac coupled input. The input stage is internally biased and 50Ω terminated. (See recommended circuit schematic) Page 5 of 9

Recommended Circuit Schematic V CC C4 Laser R 100 Driver RiteKom Transceiver 7 TX GND 9 TD+ 10 TD 8 TXDIS 6 VCCT 2 VCCR C1 C2 L1 L2 C5 C6 V CC C3 R1 R2 R3 R4 TD+ TD ECL/PECL DRIVER Serializer/ Deserializer Pre- Amp LIMITING Amplifier Signal detect R R 3 4 5 1 SD RD RD+ RX GND TTL level SD to upper level C7 C8 R9 R5 R6 R7 R8 RD RD+ Receiver PLL etc. C1/C2/C4/C5/C6/C7/C8 = 100 nf C3 = 4.7 µf L1/L2 = 1µH R1/R2/R3/R4/R5/R6/R7/R8/R9 Depend on SerDes In order to get proper functionality, a recommended circuit is provided in above recommended circuit schematic. When designing the circuit interface, there are a few fundamental guidelines to follow. (1) The differential data lines should be treated as 50 Ω Micro strip or strip line transmission lines. This will help to minimize the parasitic inductance and capacitance effects. Locate termination at the received signal end of the transmission line. The length of these lines should be kept short and of equal length. (2) For the high speed signal lines, differential signals should be used, not single-ended signals, and these differential signals need to be loaded symmetrically to prevent unbalanced currents which will cause distortion in the signal. (3) Multi layer plane PCB is best for distribution of V CC, returning ground currents, forming transmission lines and shielding, Also, it is important to suppress noise from influencing the fiber-optic transceiver performance, especially the receiver circuit. (4) A separate proper power supply filter circuits shown in Figure for the transmitter and receiver sections. These filter circuits suppress Vcc noise over a broad frequency range, this prevents receiver sensitivity degradation due to V CC noise. (5) Surface-mount components are recommended. Use ceramic bypass capacitors for the 0.1 µf capacitors and a surface-mount coil inductor for 1 µh inductor. Ferrite beads can be used to replace the coil inductors when using quieter V CC supplies, but a coil inductor is recommended over a ferrite bead. All power supply components need to be placed physically next to the V CC pins of the receiver and transmitter. (6) Use a good, uniform ground plane with a minimum number of holes to provide a low-inductance ground current return for the power supply currents. Page 6 of 9

Drawing Dimensions 13.50 9.50 0.30 0.45±0.10 48.20 3.20 1.78 19.59 4.57 7.11 10.16 17.78 13.00 16.40 uncompressed 9.00 12.00uncompressed 2.92 min 2X 1.00±0.1 6.24±0.10 ALL DIMENSIONS ARE±0.20mm UNLESS OTHERWISE SPECIFIED Unit: mm Page 7 of 9

Recommended Board Layout Hole Pattern Unit : mm(inches) This transceiver is compatible with industry standard wave or hand solder processes. After wash process, all moisture must be completely remove from the module. The transceiver is supplied with a process plug to prevent contamination during wave solder and aqueous rinse as well as during handling, shipping or storage. Solder fluxes should be water-soluble, organic solder fluxes. Recommended cleaning and degreasing chemicals for these transceivers are alcohol s (methyl, isopropyl, isobutyl), aliphatics (hexane, heptane) and other chemicals, such as soap solution or naphtha. Do not use partially halogenated hydrocarbons for cleaning/degreasing. Page 8 of 9

Eye Safety Mark The LS3 series Single mode transceiver is a class 1 laser product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings. Caution All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty. Required Mark Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11 Note : All information contained in this document is subject to change without notice. Page 9 of 9