Introduction to Digital Control

Similar documents
SMJE 3153 Control System. Department of ESE, MJIIT, UTM 2014/2015

Biomedical Control Systems. Lecture#01

Lecture 1 : Introduction to Control Engineering

Control System Definition

Chapter 1: Introduction to Control Systems Objectives

Experiment 9. PID Controller

BSNL TTA Question Paper Control Systems Specialization 2007

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

Types of control systems:

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL

ME 375 System Modeling and Analysis

Lecture 10. Lab next week: Agenda: Control design fundamentals. Proportional Control Proportional-Integral Control

Position Control of DC Motor by Compensating Strategies

UNIT- IV ELECTRONICS

ECE317 : Feedback and Control

Configuration Example of Temperature Control

Automatic Control Systems

Shape Memory Alloy Actuator Controller Design for Tactile Displays

IVR: Introduction to Control

ECE 382 Feedback Systems Analysis and Design

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim

Lecture#1 Handout. Plant has one or more inputs and one or more outputs, which can be represented by a block, as shown below.

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Winter Semester, Linear control systems design Part 1

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

DC motor control using arduino

OVEN INDUSTRIES, INC. Model 5C7-362

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class

MECHATRONICS SYSTEM DESIGN

PROCESS DYNAMICS AND CONTROL

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system

2. Basic Control Concepts

Introduction To Temperature Controllers

TODO add: PID material from Pont slides Some inverted pendulum videos Model-based control and other more sophisticated

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller

Optimal Control System Design

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

Reduction of Multiple Subsystems

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis

Fundamentals of Instrumentation & Process Control

2 Thermistor + Op-Amp + Relay = Sensor + Actuator

Figure 1.1: Quanser Driving Simulator

EE 482 : CONTROL SYSTEMS Lab Manual

PID control. since Similarly, modern industrial

PROCESS DYNAMICS AND CONTROL

Electric Circuits (Fall 2015) Pingqiang Zhou. Lecture 2 Concepts. 9/24/2015 Reading: Chapter 1. Lecture 2


CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

Lab 2: Quanser Hardware and Proportional Control

ENGG4420 END OF CHAPTER 1 QUESTIONS AND PROBLEMS

12. ELECTRONICS & INSTRUMENTATION FOR TEMPERATURE

Further Control Systems Engineering

Lecture 9. Lab 16 System Identification (2 nd or 2 sessions) Lab 17 Proportional Control

JUNE 2014 Solved Question Paper

Observer-based Engine Cooling Control System (OBCOOL) Functional Description & System Block Diagram. Students: Andrew Fouts & Kurtis Liggett

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive

1 Chapter 7: Steady-State Errors. Chapter 7. Steady-State Errors. 2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e

Rotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual

Design of Different Controller for Cruise Control System

CDS 101: Lecture 1 Introduction to Feedback and Control. Richard M. Murray 30 September 2002

The Anderson Loop: NASA s Successor to the Wheatstone Bridge

Unit 4: Block Diagram Reduction. Block Diagram Reduction. Cascade Form Parallel Form Feedback Form Moving Blocks Example

IMU Platform for Workshops

Technical Service Bulletin DCX AGC Setup Procedure for MODAP Exciters

Rotek AS440 compatible VOLTAGE REGULATOR (AVR)

LECTURE 2: PD, PID, and Feedback Compensation. ( ) = + We consider various settings for Zc when compensating the system with the following RL:

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Familiarization with the Servo Robot System

Glossary of terms. Short explanation

Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives

Lab 11. Speed Control of a D.C. motor. Motor Characterization

Welcome to SENG 480B / CSC 485A / CSC 586A Self-Adaptive and Self-Managing Systems

Electrical Drives I. Week 4-5-6: Solid state dc drives- closed loop control of phase controlled DC drives

Technical Service Bulletin DCX AGC Setup Procedure for ADAPT IV Exciters

Modern Control System Theory and Design. Dr. Huang, Min Chemical Engineering Program Tongji University

2013 Technological Studies. Standard Grade General. Finalised Marking Instructions

Special Internal Circuits

Construction Electrician Level 2

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

System Inputs, Physical Modeling, and Time & Frequency Domains

A Real-Time Regulator, Turbine and Alternator Test Bench for Ensuring Generators Under Test Contribute to Whole System Stability

Observer-based Engine Cooling Control System (OBCOOL) Project Proposal. Students: Andrew Fouts & Kurtis Liggett. Advisor: Dr.

A NOVEL METHOD OF RATIO CONTROL WITHOUT USING FLOWMETERS

Elmo HARmonica Hands-on Tuning Guide

CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS

The Datasheet and Interfacing EE3376

Chapter 2: Your Boe-Bot's Servo Motors

Introduction to Measurement Systems

Cantonment, Dhaka-1216, BANGLADESH

ELECTRONIC FUNDAMENTALS

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller

Latest Control Technology in Inverters and Servo Systems

Precision power measurements for megawatt heating controls

SECTION 6: ROOT LOCUS DESIGN

Laboratory Tutorial#1

Hardware Implementation of Automatic Control Systems using FPGAs

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

International Journal of Research in Advent Technology Available Online at:

Transcription:

Introduction to Digital Control Control systems are an integral part of modern society. Control systems exist in many systems of engineering, sciences, and in human body. Control means to regulate, direct, command, or govern and A system is a collection, set, or arrangement of elements (subsystems). A control system is an arrangement of physical components connected or related in such a manner as to command, regulate, direct, or govern itself or another system. Examples of control systems: The rocket fires, and the space shuttle lifts off to earth orbit. Our eyes follow a moving object to keep it in view; our hands grasp the object and place it properly at a fixed location. Models showing automatic control of student performance (input =study time and output = grade). CEN455: Dr. Nassim Ammour 1

Control System Definition A control system consists of subsystems and processes (or plants) assembled for the purpose of obtaining a desired output with desired performance, given a specified input. Excitation, or Command Input : Stimulus Desired response Control System Output : Response Actual response Controlled variable Control systems can have more than one input or output. An electric switch is a man-made control system controlling the electricity-flow (Man-made control systems). Pointing at an object with a finger requires a biological control system (eyes, the arm, hand, finger and the brain of a person). (Natural, including biological-control systems) The control system consisting of a person driving an automobile (both man-made and biological.) CEN455: Dr. Nassim Ammour 2

Examples 1 Examples of Control Systems a) Residential heating and air-conditioning systems controlled by a thermostat ( temperature sensor). b) The cruise (speed) control of an automobile. c) Automatic hot water heater. d) Control system which automatically turns on a room lamp at dusk, and turns it off in daylight. Example 2 When the fourth-floor button is pressed on the first floor, the elevator rises to the fourth floor with a speed and floor-leveling accuracy designed for passenger comfort. Input : The push of the fourth-floor button. Output : the elevator rises to the fourth floor. Input output If the transient response is too fast, passenger comfort is sacrificed; if too slow, passenger patience is sacrificed. The steady-state error is an important performance since passenger safety and convenience would be sacrificed if the elevator did not properly level. CEN455: Dr. Nassim Ammour 3

Advantages of Control Systems We build control systems for four primary reasons: 1. Power amplification 2. Remote control 3. Convenience of input form 4. Compensation for disturbances Low power input; high power output (move the antenna) Remote controlled robots (dangerous locations) Temperature control system (desired thermal output) Antenna system interrupted by wind forces or noise CEN455: Dr. Nassim Ammour 4

Two major measures of performance are apparent: Response Characteristics The transient response The steady-state error The short period of time immediately after the system is turned on the difference between the actual output and the desired output as time tends to infinity Example Elevator Input-Output: CEN455: Dr. Nassim Ammour 5

Control System Configurations There are two control system configurations: open-loop control system and closed-loop control system. 1.Block: set of elements that can be grouped together, with overall characteristics described by an input/output relationship. 2. Block diagram: a simplified pictorial representation of the causeand-effect relationship between the input(s) and output(s) of a physical system. The input and output characteristics of entire groups of elements within the block can be described by an appropriate mathematical expressions (Fig.2) Fig.1 Block diagram 3. Transfer function: property of the system elements only and is not dependent on the excitation and initial conditions. It is used to represent a mathematical model of each block in the block diagram representation. The transfer function of a system (or a block) is defined as the ratio of output to input. Fig.2 Block representation Fig.3 Transfer function CEN455: Dr. Nassim Ammour 6

System Configurations: Open Loop Systems Open-loop control systems represent the simplest form of controlling devices. converts the form of the input to that used by the controller drives a process or a plant Can be a motor or a furnace Example plant Controller Fig General block diagram of open-loop control system a furnace or air conditioning system a heating system (with fuel valves) and the electrical system (operates the valves). Open loop systems cannot compensate for any disturbances that add to: a) The controller s driving signal (disturbance 1 in Figure); b) The output (disturbance 2 in Figure). Example: Toasters are open-loop systems, CEN455: Dr. Nassim Ammour 7

System Configurations: Closed Loop Systems (Feedback Control) Closed-loop control systems derive their valuable accurate reproduction of the input from feedback comparison. Error = Input - output Forward Path Feedback Path feedback path Output transducer (Sensor) measures the output response and converts it into the form used by the controller. Example: if the controller uses electrical signals to operate the valves of a temperature control system, we need to convert the input position (by a potentiometer) and the output temperature (by thermistor) to electrical signals. Characteristics: 1. Can compensate disturbances, noise and changes in the environment (greater accuracy than open-loop). 2. Transient response and steady-state error can be controlled more conveniently and with greater flexibility. 3. More complex and expensive than open-loop systems ( A closed-loop toaster oven has to measure both color (through light reflectivity) and humidity. CEN455: Dr. Nassim Ammour 8

Analysis and Design Objectives Analysis Design The process by which a system's performance is determined. The process by which a system's performance is created or changed. we evaluate its transient response and steady-state error to determine if they meet the desired specifications we change parameters or add additional components to meet the system's transient response and steady-state error specifications. Three major objectives: 1. Producing the desired transient response. 2. Reducing steady-state error. 3. Achieving stability. Examples: Elevator: A slow transient response makes passengers impatient; an excessively rapid response makes them uncomfortable. Must be level enough with the desired floor for passengers to exit. Natural force must be zero or oscillate; otherwise elevator may crash through the floor or exit through the ceiling. Total response of a system = Natural response + Forced response other important considerations must be taken into account: hardware (motor size, sensor), Finances, robust design (system s parameters changes over time) depends only on the system, describes the way the system dissipates or acquires energy. depends on the input. CEN455: Dr. Nassim Ammour 9

Control System Terminology Controlled Output C(s): the output variable of the plant under the control of the control system. Controller: drives a process or plant. Disturbance or Noise Input: is an undesired stimulus or input signal affecting the value of the controlled output. Feedback Path. The feedback path is the transmission path from the controlled output back to the summing point. Forward Path. The forward path is the transmission path from the summing point to the controlled output. Transducer: A transducer is a device that converts one energy form into another. Input Transducer. Input transducer converts the form of input to that used by the controller. Plant, Process or Controlled System G(s): Is the system, subsystem, process, or object controlled by the control system. Reference Input R(s): Is an external signal applied to the control system generally at the first summing input, so as to command a specified action of the process or plant. It typically represents ideal or desired process or plant output response. Summing Point: is a small circle called a summing point with the appropriate sign associated with the arrows entering the circle. The output is the algebraic sum of the inputs. Takeoff Point: allows the same signal or variable as input to more than one block or summing point, thus permitting the signal to proceed unaltered along several different paths to several destinations. CEN455: Dr. Nassim Ammour 10

Control System Terminology General block diagram of closed-loop control system CEN455: Dr. Nassim Ammour 11

Response of Position Control System High gain causes oscillation. Zero error at steady state. If not zero error, a controller is needed for gain adjustment to regulate transient response the increased speed, increased momentum could cause the motor to overshoot the final value and be forced by the system to return to the commanded position. Response of a position control system, showing effect of high and low controller gain on the output response CEN455: Dr. Nassim Ammour 12

The Design Process transforming the requirements into a physical system transforming the physical system into a schematic diagram (use approximations). reduce this large system's block diagram to a single block with a mathematical description that represents the system from its input to its output, translates a qualitative description of the system into a functional block diagram that describes the component parts of the system and shows their interconnection. Mathematical Model(Kirchhoff s voltage / current law / Newton s law) the engineer analyzes the system to see if the response specifications and performance requirements can be met by simple adjustments of system parameters. If specifications cannot be met, the designer then designs additional hardware in order to effect a desired performance. CEN455: Dr. Nassim Ammour 13

Test Waveforms Used in Control Systems Test input signals (standard test inputs) are used, both analytically and during testing, to verify the design. If t < 0, function value = 0 An impulse waveform (infinite at t = 0 and zero elsewhere) is used to place initial energy into a system so that the response due to that initial energy is only the transient response of a system. From this response the designer can derive a mathematical model of the system. A step waveform (constant command) represents the desired position, desired velocity, desired acceleration or desired temperature. CEN455: Dr. Nassim Ammour 14