AN INTEGRATED CONTINUOUS OUTPUT LINEAR POWER SENSOR USING HALL EFFECT VECTOR MULTIPLICATION

Similar documents
AN INTEGRATED CONTINUOUS OUTPUT LINEAR POWER SENSOR USING HALL EFFECT VECTOR MULTIPLICATION

CHAPTER 1 INTRODUCTION

Elektriese stroombane: Weerstand (Graad 11) *

High Voltage Operational Amplifiers in SOI Technology

DESIGN FOR MOSIS EDUCATIONAL RESEARCH PROGRAM REPORT CMOS MAGNETIC FIELD STRUCTURES AND READ-OUT CIRCUIT. Prepared By: B.

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE

A Low Voltage Bandgap Reference Circuit With Current Feedback

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

Maak 'n waterwiel * Siyavula Uploaders. 1 TEGNOLOGIE 2 Graad 7 3 STELSELS EN BEHEER: WATER 4 Module 8 5 MAAK `N WATERWIEL 6 Opdrag 1: 7 8 Opdrag 2:

Experiment 1: Amplifier Characterization Spring 2019

Handheld Gaussmeter. Robert Ito Michael Wong Faculty Advisor Professor Henry Lee Graduate Student Mentor Owen Finch

HT9274 Quad Micropower Op Amp

DEVELOPMENT AND MODELLING OF NEW WIDEBAND MICROSTRIP PATCH ANTENNAS WITH CAPACITIVE FEED PROBES

Speel met battery elektrisiteit *

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Whispers from the Past Kopiereg: Helen Shrimpton, 2016.

Wat is elektrisiteit? *

Current loop output (4...20mA) for a volt pressure transmitter

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

LINEAR INTEGRATED SYSTEMS, INC.

High-side Current Sensing Techniques for the isppac-powr1208

DESIGN OF ON CHIP TEMPERATURE MONITORING IN 90NM CMOS

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

Design and Evaluation of a Hall Sensor with Different Hall Plate Geometries in a 0.5µm CMOS Process

LOW VOLTAGE MAGNETIC FIELD SENSOR SYSTEM WITH A NEGATIVE FEEDBACK TECHNIQUE

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

Design of Rail-to-Rail Op-Amp in 90nm Technology

4 Operasies Op Data 4.1. Foundations of Computer Science Cengage Learning

Fast IC Power Transistor with Thermal Protection

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Interface Electronic Circuits

Design of High Gain Two stage Op-Amp using 90nm Technology

INGENIEURSTATISTIEK BES 210 ENGINEERING STATISTICS BES 210

Application Sheet How to Apply Honeywell APS00B Angular Position Sensor ICs

DAT175: Topics in Electronic System Design

EXAM Amplifiers and Instrumentation (EE1C31)

1SA-1V. Single-Axis Magnetic Sensor ASIC. 1SA-1V preliminary September 2002

LM2907/LM2917 Frequency to Voltage Converter

High Accuracy 8-Pin Instrumentation Amplifier AMP02

INTEGRATED CIRCUITS. SA571 Compandor. Product specification 1997 Aug 14 IC17 Data Handbook

LM4250 Programmable Operational Amplifier

Chapter 3 Electronic Circuit for MWCNT Ethylene Sensor

EE301 Electronics I , Fall

Logarithmic Circuits

Design for MOSIS Education Program

Freescale Semiconductor Data Sheet: Technical Data

Figure 4.1 Vector representation of magnetic field.

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

LP2902/LP324 Micropower Quad Operational Amplifier

LM392/LM2924 Low Power Operational Amplifier/Voltage Comparator

onlinecomponents.com FET Circuit Applications FET Circuit Applications AN-32 National Semiconductor Application Note 32 February 1970

Section 4: Operational Amplifiers

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Meghan van Wouw ( Christo Janse van Rensburg ( Blessing Buthelezi (

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

PART MAX2265 MAX2266 TOP VIEW. TDMA AT +30dBm. Maxim Integrated Products 1

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

How to Monitor Sensor Health with Instrumentation Amplifiers

Tuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Operational Amplifiers

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I)

Ultraviolet selective thin film sensor TW30DY NEW: Read important application notes on page 4 ff.

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

Dual Low Power Operational Amplifier, Single or Dual Supply OP221


EMCA mini project report

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family

Effect of Current Feedback Operational Amplifiers using BJT and CMOS

V d = "1" if V in > V m. Fig 2: Frequency analysis of the PDM signal. Fig 1: PDM signal generation

Practical RTD Interface Solutions

Function Generator Using Op Amp Ic 741 Theory

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

Linear Voltage Regulators Power supplies and chargers SMM Alavi, SBU, Fall2017

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Short Channel Bandgap Voltage Reference

Basic OpAmp Design and Compensation. Chapter 6

THE DEVELOPMENT OF A COMPUTER DRIVEN JIGSAW. A.J. Lubbe and H. Raath

LF442 Dual Low Power JFET Input Operational Amplifier

A New Standard for Temperature Measurement in an Aviation Environment. Hy Grossman

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

LM392 LM2924 Low Power Operational Amplifier Voltage Comparator

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

Figure 2 shows the actual schematic for the power supply and one channel.

DIRECT METAL LASER SINTERING, USING CONFORMAL COOLING, FOR HIGH VOLUME PRODUCTION TOOLING #

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode.

Die wonder van water *

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

PRECISION N-CHANNEL EPAD MOSFET ARRAY DUAL HIGH DRIVE NANOPOWER MATCHED PAIR

PHASE NOISE REDUCTION OF A 0.35 µm BiCMOS SiGe 5 GHz VOLTAGE CONTROLLED OSCILLATOR

LM2907/LM2917 Frequency to Voltage Converter

An Electronic Watt-Watt-Hour Meter

433MHz front-end with the SA601 or SA620

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh

LM146/LM346 Programmable Quad Operational Amplifiers

UNIVERSITY OF PRETORIA Department of Mechanical and Aeronautical Engineering MACHINE DESIGN MOW323

Transcription:

AN INTEGRATED CONTINUOUS OUTPUT LINEAR POWER SENSOR USING HALL EFFECT VECTOR MULTIPLICATION by Dieter S. Mellet 9722332 Submitted in partial fulfillment of the requirements for the degree Master of Engineering (Electronic Engineering) in the School of Engineering University of Pretoria November 2002

ABSTRACT Keywords: Hall generator, Hall sensor, Hall voltage, Hall multiplication, Hall effect sensor, magnetic field sensor, magnetoresistance, magnetoconcentration, galvanomagnetic effects, thermomagnetic effects, thermoelectric effects, piezoresistive effects, quadrature rotation, multifinger transistors, chip on board. A Hall generator inherently functions as a multiplier in that it yields a Hall voltage representing the cross product of the bias current vector and the perpendicular magnetic field vector. These properties can be exploited in power source systems to sense supply voltage and current and directly yield the product and thus power consumption in real-time applications. As a result, no multiplication circuitry is required. The active area and manufacturing costs are thus reduced when used within integrated circuits (Ie). This document describes the design of a linear power sensor based on Hall multiplication. The primary design goal was to design a functional linear power sensor using less circuitry and thus decreasing costs when compared to conventional methods used for power metering applications. The sensor is thus intended for integration into currently available single-chip power meter solutions through minor modification. The sub-circuits necessary for a fully functional system has been designed and simulated. These include; i) voltage to current converters for biasing the Hall generator as a function of the source voltage, ii) bandgap reference for temperature independent on-chip referencing, iii) operational amplifiers for sensing and amplification of the Hall voltage and, iv) offset cancellation circuitry for removing offsets inherent in the amplifiers as well as the Hall generator. The sensor has been verified on system level through both simulation and discrete component level testing.

UITTREKSEL Sleutelwoorde: Hall-opwekker, Hall-sensor, Hall-spanning, Hall-verrnenigvuldiging, Halleffek sensor, magneetveld sensor, magnetoweerstand, magnetokonsentrasie, galvanomagnetiese effekte, terrnomagnetiese effekte, terrnoelektriese effekte, piezoweerstand effekte, kwadratuur rotasie, multivinger transistors, vlokkie-op-bord. 'n Hall-opwekker kan so os 'n verrnenigvuldiger funksioneer wat 'n Hall spanning lewer. Dit kan die kruisproduk van die voorstroom vektor en loodregte magneetveld vektor voorstel. Die eienskappe kan gebruik word in kragbronne om toevoerspanning en -stroom te meet en direk 'n produk te lewer, wat drywingsverbruik intyds voorstel. Dus word vermenigvuldiging stroombane nie benodig nie. Die aktiewe area benodig word verrninder wanneer dit toegepas word in gelntegreerde stroombane, en so word vervaardigingskostes verminder. Hierdie dokument beskryf die ontwerp van 'n liniere drywingsensor wat op Hallverrnenigvuldiging gebasseer is. Die primere ontwerpsdoel was om 'n funksionele liniere drywingsensor te ontwerp, wat minder stroombane benodig om kostes te verrninder wanneer vergelyk word met huidige drywingsmeting toepassings. Die sensor is ontwerp met huidige enkelvlokkie drywingsmeters in gedagte en sal slegs klein veranderings benodig om by ander stelsels aan te pas. Die boublokke wat benodig word vir 'n volledige, werkende stelsel is ontwerp en gesimuleer. Hierdie sluit in: i) 'n spanning-na-stroom omsetter, vir vool spanning van die Hall-opwekker, wat eweredig is aan die kragbron spanning, ii) 'n bandgaping verwysing vir temperatuur onafhanklikke spanningsverwysing, wat benodig word deur verskeie stroombane, iii) operasionele versterkers, om die Hall-spanning te meet en te versterk en, iv) afset kansellasie stroombane, om wanbalanse te verwyder wat inherent voorkom in versterkers sowel as die Hall-opwekker. Die sensor is op stelselvlak sowel as op diskrete komponent vlak gesimuleer en funksioneer korrek. 11

CONTENTS 1. Introduction......... 1 1.1.1. Current Sensing Techniques... 1 1.2. Summary of Related Work... 3 1.3. Contributions of This Study...4 1.4. Dissertation Outline... 4 2. Power Sensor Architecture... 5 2.1. Introduction......... 5 2.2. Background... 5 2.2.1. The IEC 1036 Standard... 5 2.3. Problem Definition... 8 2.4. System Architecture... 10 2.4.1. Traditional Watt-Hour Meter Architecture... 10 2.4.2. The Hall Effect Multiplier... 11 2.5. System Operation..... 12 2.5.1. Resistor Divider Network... 12 2.5.2. Hall Generator... 12 2.5.3. Temperature Independent Reference... 14 2.5.4. Differential Amplifier, Offset Cancellation Circuitry and Low Pass Filtering... 14 2.6. System Specifications... 15 2.7. Conclusion......... 16 3. Hall Generator... 17 3.1. Introduction... 17 3.2. Background... 18 3.3. Galvanomagnetic Effects in Semiconductors... 18 3.3.1. The Hall Effect... 18 3.4. The Ideal Hall Plate... 24 3.4.1. Geometrical Considerations...... 24 3.4.2. Electrical Compatibility Concerns... 27 3.4.3. Sensitivity...... 28 3.4.4. Noise...... 28 3.4.5. Offset Voltage... 29 3.4.6. Linearity Error... 30 3.4.7. Temperature Coefficients... 31 111

3.4.8. Hall Generator Design.............. 32 3.4.9. Sensitivity and Noise... 33 3.4.10. Linearity.......................................34 3.4.11. Temperature.................... 34 3.4.12. Offsets... 34 3.5. Simulation... 35 3.5.1. Simulation Model for Hall Plate......... 35 3.6. Experimental Verification........... 39 3.6.1. Sensitivity......... 39 3.6.2. Offsets................... 41 3.6.3. Linearity Errors... 42 3.6.4. Temperature Behavior... 43 3.7. Conclusion........................ 44 4. Signal Processing Circuitry......... 45 4.1. Introduction............ 45 4.2. Temperature Independent Biasing...... 45 4.2.1. The Bandgap Reference......46 4.2.2. The Current Reference... 49 4.3. Voltage to Current Converter.................... 52 4.4. Amplifier... 53 4.4.1. Operational Amplifier Architecture... 53 4.4.2. Frequency Response.............. 55 4.4.3. Design of the Operational Amplifier........... 62 4.4.4. Output Instrumentation Amplifier......... 64 4.5. Offset Cancellation and Filtering...... 66 4.5.1. The Switched Hall Plate......... 66 4.5.2. Filtering............ 69 4.6. Simulation......... 71 4.6.1. The Bandgap Reference..................... 71 4.6.2. Bias Current Reference................. 72 4.6.3. The Operational Amplifier... 73 4.7. Experimental Verification............... 76 4.7.1. Instrumentation Amplifier... 76 4.8. Conclusion............... 78 5. Hall Multiplication Based Power Sensor System... 80 IV

5.1. Introduction........ 80 5.2. System Interface...............80 5.3. Simulation......... 82 5.4. Experimental Verification................. 88 5.4.1. The Hall multiplier......... 88 5.4.2. Linearity... 90 5.4.3. Temperature Stability... 92 5.5. Layout and Packaging........... 94 5.5.1. General Layout Considerations... 94 5.5.2. Analog Layout Techniques..................... 94 5.5.3. Packaging..................... 94 5.6. Comparison to Similar Systems...... 96 5.6.1. SA2002............. 97 5.6.2. AD7755... 97 5.7. Conclusion................................. 99 6. Conclusion............... 100 6.1. What was Given?......... 100 6.2. What was the Aim?... 100 6.3. What has been Accomplished?... 100 6.4. What can be Learned from This?......... 101 6.5. What is the Next Step?.......................... 102 References... 104 Addendum A: 1.2~lm CMOS Process Parameters... 108 Addendum B: Operational Amplifier Design......... 110 Addendum C: System Schematics.............. 116 Addendum D: Layout Legend.................... 123 v