PERPUSTAKAAN UTHM ' '

Similar documents
BORANG PENGESAHAN STATUS TESIS

18V TO 1000V BOOST CONVERTER BENNEDICT BALLY ANAK NAROK UNIVERSITI MALAYSIA PAHANG

A DESIGN METHODOLOGY FOR A SELF-OSCILLATING ELECTRONIC BALLAST AMIRA BINTI MUSTAPA

FABRICATION OF PERPETUAL MOTION WATER DRINKING TOY BIRD CHEE SAI HOW UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

DEVELOPMENT OF REMOTELY OPERATED UNDERWATER VEHICLE AFIQ FIKRI BIN HAMID UNIVERSITI MALAYSIA PAHANG

PINEAPPLE DISTRIBUTION CLASSIFICATION USING RGB AND FUZZY EZRIN TASNIM BIN ABDUL GANI

DESIGN AND FABRICATE A FLEXIBLE TOILET HOSE WITH SPOOL ABDULLAH MUNZIR BIN ZUL SAFARUDDIN UNIVERSITI MALAYSIA PAHANG

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

DEVELOPMENT OF A TOOL TO DESIGN AC HARMONIC FILTER FOR HVDC TRANSMISSION SYSTEM CHA KWAN HUNG. A thesis submitted in fulfillment of the

UNIVERSITI MALAYSIA PAHANG BORANG PENGESAHAN STATUS TESIS

FIR FILTER FOR MAKHRAJ RECOGNITION SYSTEM AIMI NADIA AZMI

UNIVERSITI MALAYSIA PAHANG BORANG PENGESAHAN STATUS TESIS JUDUL: PREDICTION OF GRINDING MACHANABILITY WHEN GRIND HAYNES 242 USING WATER BASED COOLANT

LINE TRACKING ROBOT USING VISION SYSTEMS CHE ROHAZLI BIN CHE MAZLAM

BORANG PENGESAHAN STATUS TESIS

THE DESIGN OF OPTIMUM INVERTER JUSTIN ANAK JAMES

Study of Laser Cutting Machine & Its Application in Malaysian Industries

NURHASLINDA BINTI MUSTAFFA KAMAL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMAGE RESTORATION USING MEAN, MEDIAN AND ADAPTIVE FILTER ADELINE CHUA JIA MIN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DUAL THRESHOLD VOLTAGE FOR HIGH PERFORMANCE DOMINO LOGIC

1it i I! l <t\ ; i :i'1 "i i "i i; i'»t! : \ f- i " i(f;f! M i'ci i;!i.l iv jm ; i J i.hv{\ i i\oi j i I i'u>u i. V:l j t'i\ l i l ^ f : rft O m

UNIVERSITI TEKNIKAL MALAYSIA MELAKA DESIGN ANALYSIS OF A PRESS MACHINE FOR DISPOSABLE PET BOTTLE

PERPUSTAKAAN UTHM * *

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN BORANG PENGESAHAN STATUS TESIS~ SES! PENGAID.-N: 2004/2005 M..A R.LIA HINT! MORSTN (HURUF BESA...

DESIGN AND ANALYSIS OF A LOW POWER OPERATIONAL AMPLIFIER USING CADENCE NABILAH BINTI SK.ABD.AZIZ

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN 1'-'-- --~ BORANG PENGESAHAN STATUS TESIS MASK DESIGN, FABRICATION AND TEST NMOS TRANSISTOR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA DEVELOPMENT OF INTERACTIVE MACHINING PROCESS DESIGN AND MACHINING TIME CALCULATION

UNIVERSITI TEKNIKAL MALAYSIA MELAKA OPTIMIZATION OF FDM PARAMETERS WITH TAGUCHI METHOD FOR PRODUCTION OF FLEXIBLE ABS PART

POWER AMPLIFIER DESIGN FOR ULTRA-WIDEBAND APPLICATIONS MUHAMMAD SYAHIR BIN YOSUF

DESIGN OF LOW VOLTAGE CMOS TRISTATE BUFFER. Nurul Huda binti Zulkifli

UNIVERSITI TEKNOLOGI MALAYSIA BORANG PENGESAHAN STATUS TESIS. JUDUL: MICROSTRIP SIERPINSKI CARPET ANTENNA DESIGN. SESI PENGAJlAN: 2004/2005

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PORTABLE DISTANCE MEASUREMENT MOHD ASHRAF BIN MD SAID

UNIVERSITI MALAYSIA SARAWAK

DESIGN AND IMPLEMENTATION OF ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING RECEIVER NORAZNI BINTI YUSOFF

DESIGN AND DEVELOPMENT OF SEMG ACQUISITION SYSTEM USING NI MYRIO FOR PROSTHESIS HAND LIAO SHING WEN

MICROSTRIP BANDPASS FILTER DESIGN (COMBLINE) MOHAMAD HAMIZAN BIN TUAH

FINGER VEIN VERIFICATION. Krishna Veni A/P Selvan

PERFORMANCE EVALUATION OF OPTICAL AMPLIFIER IN WDM SYSTEM PEH PO ING

M! <"; P-. r» S.IT P» '<» ;f. r A J, ft 9" Ffc -"N!"> S 5 t I! A; '? ; ' -t' :.» T" V 1. u.i.ju S iuvw-» ( imiti v Slls.-nnwi..i!

ENERGY SCAVENGING FOR MOBILE AND WIRELESS DEVICE USING HIGH-EFFICIENCY RECTIFIER CIRCUIT LEE YOUHUI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

WEARABLE ANTENNA FOR 2.4GHz FREQUENCY FOR WLAN APPLICATION NUR RAFEDAH BINTI SATAR

AN ADAPTIVE ALGORITHM FOR THE TUNING OF TWO INPUT SHAPING METHODS NUR HAFIZAH BINTI HASSAN

SMART COLOR SORTING ROBOT SITI NADRAH BINTI SELAMAT

OPTIMUM DESIGN OF RECTIFYING CIRCUIT OF RF ENERGY TRANSFER RAHMIYENI BINTI ASWIR

MERLIN MIABOT PRO ROBOT SOCCER (2 WHEELS) MUHAMMAD ASYRAF BIN BADARUDDIN

SPEED CONTROL OF PNEUMATIC CYLINDER USING ON/OFF VALVE AND PWM SITI AMIRAH BINTI MOHD PADLI

WIRELESS POWER TRANSFER FOR ELECTRIC VEHICLES AMALUDDIN BIN ZAINUDDIN

LOG PERIODIC ANTENNA DESIGN SITI NORHIDAYAH BINTI HJ. MOHAMED

GENERALIZED CHEBYSHEV MICROWAVE FILTER FOR WIDEBAND APPLICATIONS LIM FENG SHENG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A METHODOLOGY TO DEVELOP ONTOLOGY OF ADDITIVE MANUFACTURING USING FORMAL ATTRIBUTES SPECIFICATION TEMPLATE (FAST)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ENERGY EFFICIENT ELECTRONIC BLIND SYSTEM FOR HOME WINDOWS. Liew Hon Choi

LINE FOLLOWING ROBOT

DESIGN AND SIMULATION OF ADAPTIVE CRUISE CONTROL USING MATLAB/SIMULINK MOHD FIRDAUS BIN JAHAR

AN ARRAY ANTENNA DESIGN FOR RF ENERGY HARVESTING SYSTEM SHARIF AHMED QASEM AHMED

PROPAGATION COVERAGE FOR COMMERCIAL BUILDINGS SCENARIOS USING RAY TRACING TECHNIQUES NURUL HASLIN BT NURYA YA

Signature : Supervisor : Mr. Loi Wei Sen

Universiti Teknologi Malaysia BORANG PENGESAHAN STATUS TESIS QUALITY CONTROL IN PILE MANAGEMENT SYSTEM SESI PENGAJIAN : 2006/2007

STUDY OF DESIGN CONSIDERATION AND PERFORMANCE ANALYSIS OF SUBSTRATE INTEGRATED WAVEGUIDE COMPONENTS ADILAH BINTI ABU SAMAH

AN ANALYSIS OF SIGLE-LAYER DIFFERENTIAL CPW-FED NOTCHED-BAND TAPERED-SLOT UWB ANTENNA MUHAMMAD FATHI BIN AZHAR

CURVE TRACER USING MICROCONTROLLER ASYRAF TAQIUDDIN BIN AHMAT TAHIR

WIRELESS ENERGY TRANSFER MOHD NASUHA BIN MOHAMAD ZIN

Design and Development of Grass Cutting Machine using DFMA Methodology

DESIGN OF THERMOELECTRIC ENERGY HARVESTER USING LTC 3108 BOOST CONVERTER MUHAMMAD ZULHAIZER BIN AB RASHID

A COMPARATIVE STUDY OF TOPOLOGY CONTROL ALGORITHM IN WIRELESS SENSOR NETWORK MUHAMAD IZZAT AFIFI BIN ROSLAN

DESIGN AND IMPLEMENTATION OF A LOW COST PORTABLE AND COMPACT 2.4 GHZ SPECTRUM ANALYZER

ih'ti.; ->r;: p p y ; r * t

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AHMAD RIDZUAN BIN AB. WAHAB

CHILD SAFETY MONITORING SYSTEM

DESIGN OF APPLICATION WIRELESS HOME SPEAKER SYAFIQAH BINTI SHAHRUZZAMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FINAL YEAR PROJECT 2 BENU 4984 TITLE:

SIMULATION OF AN ARTICULATED ROBOT ARM MUHAMAD FAZRUL BIN MD ZAIN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

B BACHELOR OF MANUFACTURING ENGINEERING (MANUFACTURING PROCESS) (HONS.) 2012 UTeM

COMPARISON OF PERFORMANCE OF VARIOUS OP-AMP TOPOLOGIES USING CMOS 0.13µm TECHNOLOGY NURUS SAADAH BT CHE MAT

AN AUTOMATIC POURING MACHINE ADNAN BIN AHMAD

DESIGN OF DUAL BAND FREQUENCY SELECTIVE SURFACE NORSHAHIDA BINTI MOHD SAIDI B

THE DESIGN OF ANTIPODAL VIVALDI ANTENNA USING GRAPHENE NURUL SYUHADA BINTI HASIM UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LOCALIZATION AND POSITIONING via Wi-Fi SIGNALS MOHD IDZWAN BIN OTHMAN

BO RANG PENGESAHAN ST A TUS TES IS*

SMS BASED EARLY FLOOD WARNING SYSTEM USING RASPBERRY PI ABDULLAH AZAM BIN SHAHRIN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF RECTIFIER WITH IMPEDANCE MATCHING CIRCUIT FOR RF ENERGY HARVESTING ENA BINTI AMILHAJAN

DESIGN OF RECTIFYING CIRCUIT WITH IMPROVED RF-DC CONVERSION FOR WIRELESS POWER TRANSFER CHAN CHUN YEW UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MELISSA SARA ECHA ANAK GABRIEL

WIRELESS WEATHER STATION BY USING ZIGBEE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA THE DEVELOPMENT OF PRESSURE SENSOR FOR PIPING SYSTEM

VIRTUAL FABRICATION PROCESS OF PLANAR POWER MOSFET USING SILVACO TCAD TOOLS NORZAKIAH BINTI ZAHARI

MICROSTRIP LEAKY WAVE ANTENNA DESIGN FOR WLAN APPLICATION NURLIYANA BT ABD MALIK

Design of Wheelbarrow for Construction Industry Utilizing Ergonomics Analysis and QFD

THE EFFECT OF PRIMARY RELIEF ANGLE TO THE DIMENSIONAL SURFACE ERROR OF THIN-WALL COMPONENTS

MUSIC SYNCHRONIZED LIGHTING SITI HAWA BINTI MAT ISA

Transcription:

W... w.vvvj i Hi, U i U : ii i v a ; «ili.^.a i.lw.u A? t-t m-fcjvv»-at ' l>lfcj I p V E f t S i t i ': -. - : i <rfc Jir- T««h i ^is :ifi vi05! '-ij iuii rmsfcts M

PERPUSTAKAAN UTHM '30000001883616'

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN PENGESAHAN STATUS LAPORAN PROJEK SARJANA SIMULATION, FABRICATION AND CHARACTERIZATION OF NMOS TRANSISTOR SESI PENGAJIAN : 2006/2007 Saya DAMHUJ1 BIN RIFAI mengaku membenarkan Laporan Projek Sarjana ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. 2. 3. 4. Laporan Projek Sarjana adalah hakmilik Kolej Universiti Teknologi Tun Hussein Onn. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. ** Sila tandakan (V) SULIT TERHAD TIDAK TERHAD (Mengandungi maklumat yang berdaijah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan Disahkan oleh (TANDATANGAN PENULIS) (TANI^TANGWPENYELIA) Alamat Tetap: 12, LOT 392, JALAN TENGAH 7, BATU 6 '/ 2 GOMBAK, 53100, GOMBAK SELANGOR. PROFESSOR DR. HASHIM BIN SAIM Nama Penyelia Tarikh: 21 DISEMBER 2006 Tarikh: 21 DISEMBER 2006 CATATAN: ** Jika Laporan Projek Saijana ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu di kelaskan sebagai SULIT atau TERHAD.

" I hereby declare that I have read this thesis and in my opinion this thesis in terms of content and quality requirement fulfills the purpose for the award of the Master of Electrical Engineering" Signature Name of Supervisor Date : PROF. Dr. HASHIM BIN SAIM : 21 DECEMBER 2006

SIMULATION, FABRICATION AND CHARACTERIZATION OF NMOS TRANSISTOR DAMHUJI B. RIFAI This thesis is submitted in partial to fulfillment of the requirement for the Master of Electrical Engineering Faculty of Electrical And Electronic Engineering Tun Hussien Onn University College of Technology DECEMBER, 2006

ii " I hereby declare that the work in this thesis in my own except for quotations and summaries which have been duly acknowledged" Signature : -. Name of Student : DAMHUJI BIN RIFAI Date : 21 DECEMBER 2006

To my parents; for your love and support iii

IV ACKNOWLEDGEMENTS All praises be to Allah SWT. Without His hidayah, 'inayah and ri 'ayah, the study would not come to completion. Peace and blessings be upon the beloved Prophet SAW, with his Risalah and teaching the study has become meaningful to me. I express my gratitude and thanks from the deepest of my heart to Professor Dr. Hashim Saim for his wonderful, resourceful and enlightening supervision. His wisdom, patient and support have been the courage and motivation of my challenging and tiring work. To Mohd Zainizan Sahdan, I would like to express my utmost appreciation for his strong commitment in assisting me for the eventual completion of my work. Many thanks I dedicate to technician in KUiTTHO Microfabrication Cleanroom, Ramlan bin Ralim for his lovely cooperation in my various laboratory tasks. I also would like to appreciate all my friends and colleagues in KUiTTHO for the friendship and the sincere cooperation. Lastly but not least, I would like to express my great thanks to those who have contributed directly or indirectly in the completion of my studies. I should admit and submit that the completion of this study owes to the contributions from all the parties above regardless of any forms.

IV ABSTRACT This thesis explains the recipe module development for the first Long Channel NMOS transistor device fabrication process at cleanroom laboratory of KUiTTHO. A recipe for the NMOS transistor fabrication process has been successfully produced. Threshold Voltage and Leakage Current, with different channel length and oxide gate for the Long Channel NMOS transistor too has been investigated. The data from the experiment conducted have shown that the threshold voltage is more influenced by the thickness of the oxide gate as compared with the channel length. The threshold voltage increased in linear form with the increase of the oxide gate thickness; and there is almost no change for different channel length. Leakage Current reduces exponentially with the increase of the oxide gate thickness and the channel length.

IV ABSTRAK Tesis ini menerangkan pembangunan modul resepi bagi proses fabrikasi peranti transistor kesan medan logam-oksida semikonduktor salur panjang {Long Channel NMOS transistor) yang pertama kali di makmal bilik bersih KUiTTHO. Resepi bagi proses fabrikasi peranti transistor kesan medan logam-oksida semikonduktor telah berjaya dihasilkan. Voltan ambang dan arus bocor salir, dengan panjang salur dan oksida get yang berbeza bagi transistor kesan medan logam-oksida semikonduktor salur panjang telah di kaji. Data dari eksperimen yang telah dilakukan menunjukkan voltan ambang banyak di pengaruhi oleh ketebalan oksida get berbanding dengan panjang salur. Voltan ambang naik secara linear dengan kenaikan ketebalan oksida get dan hampir tidak ada perubahan bagi panjang salur yang berbeza. Arus bocor salir berkurangan secara eksponen dengan kenaikan ketebalan oksida get dan panjang salur.

vii CONTENTS CHAPTER TITLE PAGE TITLE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACK ABSTRAK TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDIX i ii iii iv v vi vii xi xii xvii xx I PROJECT OVERVIEW 1 1.1 Overview 1 1.2 Introduction - 1 1.3 Problem Aspire 4 1.4 Objectives 4 1.5 Project Scope 5

Vlll II LITERATURE REVIEW - MOS TRANSISTOR 6 2.1 Introduction 6 2.2 The MOS Transistor 9 2.2.1 The NMOS Transistor 10 2.2.2 The PMOS Transistor 12 2.3 Electrical Characteristics Of The MOS Transistor 13 2.3.1 The MOS System under External Biased Voltage. 13 2.3.2 The MOSFET Operation 15 2.4 Fabrication process 23 2.4.1 Lithography 23 2.4.1.1 The Wafer with the substrate Film 24 2.4.1.2 Photo Resist Deposition 24 2.4.1.3 Softbake 25 2.4.1.4 The Mask Alignment 26 2.4.1.5 Ultra Violet Radiation Exposure 26 2.4.1.6 Development 26 2.4.1.7 Photoresist strip 26 2.4.2 Diffusion 27 2.4.3 Ion Implantation 30 2.4.4 Metallization 32 2.4.5 Deposition 33 2.4.5.1 Silicon Dioxide Deposition 34 2.4.6 Etching 35 2.4.6.1 Wet etching 36 III NMOS TRANSISTOR SIMULATION 37 3.1 Overview 37

ix 3.2 NMOS Transistor Simulation 37 3.3 Linux Operating System 38 3.4 Integrated System Engineering Technology Computer Aided Design (ISE TCAD) 3 8 3.4.1 GENESISe 41 3.4.2 Ligament Flow Editor 42 3.4.3 Ligament Layout Editor 43 3.4.4 Floops-Ise 44 3.4.5 Dessis Programming Code 46 3.4.6 Tecplot-ISE 49 3.4.7 Inspect 50 IV CLEANROOM 53 4.1 Overview 53 4.2 KUiTTHO Microfabrication Cleanroom 53 4.3 Water Purification System 56 4.4 Equipment Process 58 4.4.1 Oxidation and Diffusion furnace 58 4.4.2 Photolithography module 61 4.4.3 Wet Etching Modules 64 4.4.4 Wafer Test Module 65 4.4.5 Consumable 68 V THE FABRICATION PROCESS OF NMOS TRANSISTOR 69 5.1 Overview 69 5.2 Preliminary research 69 5.2.1 Dry oxidation 70 5.2.3 Wet oxidation 71

IV 5.2.4 Aluminum Deposition 73 5.3 Mask Design 74 5.4 Fabrication Process of NMOS Transistor 77 VI RESULT AND DISCUSSION 87 6.1 Overview 87 6.2 NMOS transistor Simulation 87 6.2.1 Channel length effect 88 6.2.2 Oxide gate thickness effect 93 6.3 NMOS Transistor Fabrication 97 6.3.1 Preliminary Research 97 6.3.2 Fabrication Process 100 VII CONCLUSION 112 7.1 Overview 112 7.2 Conclusion 114 7.3 Problem 113 7.4 Future suggestion 114 REFERENCES 116

xi LIST OF TABLES TABLE NO. TITLE PAGE 1.1 Technology Development Forecast By Semiconductor Industry Association (SIA) 3 2.1 Voltage-current equations for the MOSFET n-channel 22 2.2 Voltage-current equations for the MOSFET p-channel 22 2.3 Resistivity and Metal workfunction usually use in the Metallization process. 33 4.1 Consumable used in NMOS Fabrication 69 5.1 Steps in designing mask sets using Turbo CAD 77 6.1 Device and process parameter for long NMOS transistor with different gate oxide thickness 107 6.2 Device and process parameter for long NMOS transistor with different channel length. 109 6.3 Complete NMOS Transistor Fabrication Process 110

Xlll LIST OF FIGURES FIGURE NO TITLE PAGE 1.1 Prediction Formula of Moore's Law 2 2.1 The Family of transistor 8 2.2 Cross Section of NMOS Transistor 10 2.3 Cross Section of PMOS Transistor 10 2.4 Schematic Cross Section of the n-type channel MOSFET 11 2.5 Schematic Cross Section of the p-type channel MOSFET 13 2.6 Cross section of MOS structure and Energy Band during accumulations 14 2.7 Cross section of the MOS structure and the energy band during depletion mode 15 2.8 Cross section of the MOS structure and the energy band to the inversion surface 15 2.9 Cross section of the NMOS operating in linear mode 16 2.10 Cross section of the NMOS operating in the pinch-off point 17 2.11 Cross section of the NMOS operating at the saturated mode 18 2.12 The graph of the drain current (I D ) against the drain voltage (V D ) for NMOS transistor 18 2.13 The graph of the drain current (I D ) against gate voltage (VG) for NMOS transistor 19 2.14 The graph of the drain current (I D ) against the drain voltage (V D ) 19 for the PMOS.

2.15 The graph of the drain current (I D ) against the gate voltage (V G ) for the PMOS. 20 2.16 Current-voltage characteristics of the MOS transistors n-channel including the effect of the length channel modulation 21 2.17 Patterns Transferring on the Wafer 24 2.18 Positive and negative photoresist 25 2.19 Ion distribution towards distance from the surface. 21 3.1 Process of NMOS transistor simulation using ISETC AD 41 3.2 GENESISe Window 42 3.3 Ligament Flow Editor window. 43 3.4 Ligament Layout Editor Window 45 3.5 Channel length of NMOS transistor to be developed 46 3.6 Tecplot-ISE window 51 3.7 INSPECT Window 52 3.8 Steps for obtaining the treshold voltage 53 3.8 Steps for obtaining the drain leakage current. 53 4.1 The Micro fabrication cleanroom layout,kuittho 55 4.2 Front view of micro fabrication cleanroom 56 4.3 View inside micro fabrication cleanroom 56 4.4 Water purification system,kuittho 58 4.5 Deionised water purification equipment 58 4.6 Switches Panel for Furnace Exhaust 61 4.7 Furnace Heat Exhaust System 61 4.8 Furnace Control Panel 62 4.9 The Programmable spin coater 63 4.10 The Aligner and Exposure system. 63 4.11 The Hot plate 64 4.12 Waste container and vacuum pump. 64 4.13 Wet etching module controller 65 4.14 The Spin dryer 66

IV 4.15 The Wafer test system 67 4.16 The Capacitance measurement system 68 4.17 The 4-Point Probe 68 4.18 The H-150 Microprobe Station 69 5.1 Source/drain and gate masks 78 5.2 Contact and Metal masks 78 5.3 P-type Si wafer 81 5.4 Oxide Grown 81 5.5 Photoresist Applied 82 5.6 Photoresist Developed 82 5.7 Etch windows 82 5.8 Strip the resists with Acetone 83 5.9 N-type diffusion for P-type substrate 83 5.10 Wet Oxidation (2500A) 83 5.11 Photolithography for 2nd photo mask (gate) 84 5.12 Photoresist Developed 84 5.13 Etch Windows for Gate 84 5.14 Dry Oxidation for Gate 85 5.15 Photolithography for 3rd photo mask (Contact) 85 5.16 Photoresist Developed 85 5.17 Etch Windows for Contacts 86 5.18 Photoresist Removed 86 5.19 Metal Deposition 86 5.20 Photoresist Applied 87 5.21 Photoresist Developed 87 5.22 Etch Metal 87 5.23 Completion ofnmos Fabrication 88 6.1 Graph of VTHgm vs. channel length 90 6.2 Graph of VTHlin vs. channel length 91 6.3 Graph of drain leakage current vs. channel length 91 6.4 I D V D characteristics ofnmos transistor with different channel

xix length (Tox = 2.2 nm, VG = 1.OV} 92 6.5 IDVG characteristics ofnmos transistor at HIGH VDS with different channel length 93 6.6 Log IDV g characteristic at HIGH V D s ofnmos transistor with different channel length 93 6.7 NMOST transistor mesh profile with different channel length 94 6.8 NMOST transistor phosphorus doping profile with different channel length 95 6.9 Graph ofvthgmvs Gate Oxide Thickness 96 6.10 Graph ofvthlinvs Gate Oxide Thickness 96 6.11 Graph of drain leakage current vs. gate oxide thickness 97 6.12 I D V D characteristics ofnmos transistor (L= 5 um, Tox = 1.8 nm, VG = 1.0V) 97 6.13 IDV d characteristics ofnmos transistor (L=5um, Tox = 1.6 nm, VG = 1.0V) 98 6.14 I D V G characteristics ofnmos transistor at HIGH V DS (L=5 um, Tox = 1.8 nm) 98 6.15 I D V G characteristics of NMOS transistor at HIGH VDS (L=5 um, Tox = 1.6 nm) 99 6.16 The growth rates of silicon oxide for dry oxidation process 100 6.17 The growth rates of silicon oxide for wet oxidation process 101 6.18 Graph of aluminium vs. size of aluminium 102 6.19 The inspection outcome in source/drain masking 103 6.20 The inspection outcome in gate masking process 103 6.21 The inspection outcome in contact masking process 104 6.22 The inspection outcome in metal masking process 104 6.23 I D V D characteristics of Long Channel NMOS transistor. (V DS =5V, L=320um, Tox=720A) 105 6.24 I D V D characteristics of Long channel NMOS transistor. (V ds =5V, L=290um, Tox = 650A) 106 6.25 I D V D characteristics of Long Channel NMOS transistor.

(V ds =5V, L= 160um, Tox=650) IDV d characteristics of Long Channel NMOS transistor (VDS=5V, L=270um, Tox=650A)

LIST OF SYMBOLS A A c C Cj C 0X D E Ea Ec E d E f E8 Ei E v F n F P h I J Jn Jp k Area Symbol for 10" 10 cm or 10" 8 m Speed of light in vacuum Capacitance Junction capacitance per unit area Oxide capacitance per unit area Diffusion coefficient Electric field Acceptor energy Conduction band energy of a semiconductor Donor energy Fermi energy (thermal equilibrium) Energy bandgap of a semiconductor Intrinsic Fermi energy Joule Valence band energy of a semiconductor Quasi-Fermi energy of electrons Quasi-Fermi energy of holes Plank's constant Current Current density Electron current density Hole current density Boltzmann's constant

XVlll L m n rii N Length Mass Electron density Intrinsic carrier density Doping density N a N c Nd Acceptor doping density Effective density of states in the conduction band Donor doping density 0 Charge O P,B Hole charge in the base Q d Q d j R t t ox T v v,h V a VB V D VG VG Vt V TH x d xd, T Xj Charge density per unit area in the depletion layer of an MOS structure Charge density per unit area at threshold in the depletion layer of an MOS structure Resistance Thickness Oxide thickness Temperature Velocity Thermal velocity Applied voltage Base voltage Drain voltage Body voltage Gate voltage Thermal voltage Threshold voltage Depletion layer width Depletion layer width in an MOS structure at threshold Junction depth x Depletion layer width in an n-type semiconductor xp Depletion layer width in a p-type semiconductor

xix ox Dielectric constant of the oxide F/m S s fj n fj p <PM &MS Dielectric constant of the semiconductor F/m Electron mobility Hole mobility Workfunction of a metal V Workfunction difference between a metal and a semiconductor V

CHAPTER I PROJECT OVERVIEW 1.1 Overview This chapter will explain the project overview and scopes of project. 1.2 Introduction The history of microelectronics began on December 1947 at the Bell Labs, United States of America, when three scientists John Brdeen, Wafter Brattain and William Shockley invented the first semiconductor device which is called the transistor that was able to replace the functions of the vacuum tube as an amplifier. The said invention had opened the path in producing electronic circuitry designs that were small and cheap. Entailing the discovery, large numbers of electronics companies were incorporated including one by William Shockley himself in the year 1955 in Santa Clara