A hybrid multilevel inverter topology for drive applications

Similar documents
A Power Electronic Transformer (PET) fed Nine-level H-Bridge Inverter for Large Induction Motor Drives

Hybrid Multilevel Power Conversion System: a competitive solution for high power applications

Switching Angles and DC Link Voltages Optimization for. Multilevel Cascade Inverters

Control Strategies for a Hybrid Seven-level Inverter

Hybrid Multilevel Power Conversion System: A Competitive Solution for High-Power Applications

AN IMPROVED MODULATION STRATEGY FOR A HYBRID MULTILEVEL INVERTER

A New Family of Matrix Converters

A New Multilevel Inverter Topology with Reduced Number of Power Switches

ECEN 613. Rectifier & Inverter Circuits

Development of Multilevel Inverters for Control Applications

PF and THD Measurement for Power Electronic Converter

Full Binary Combination Schema for Floating Voltage Source Multilevel Inverters

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Optimum Harmonic Reduction With a Wide Range of Modulation Indexes for Multilevel Converters

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Power Quality Enhancement of Diode Clamped Multilevel Inverter Using Different Modulation Schemes

A Comparative Modelling Study of PWM Control Techniques for Multilevel Cascaded Inverter

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

A SOLUTION TO BALANCE THE VOLTAGE OF DC-LINK CAPACITOR USING BOOST CONVERTER IN DIODE CLAMPED MULTILEVEL INVERTER

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

A Novel Multilevel Inverter Employing Additive and Subtractive Topology

A Comparative Study of Different Topologies of Multilevel Inverters

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

COMPARISON OF GRID CONNECT MULTI-LEVEL INVERTER

MULTILEVEL pulsewidth modulation (PWM) inverters

Speed control of Induction Motor drive using five level Multilevel inverter

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

Simulation and Experimental Results of 7-Level Inverter System

Design of Five-Level Bidirectional Hybrid Inverter for High-Power Applications

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications

Simulation of Five-Level Inverter with Sinusoidal PWM Carrier Technique Using MATLAB/Simulink

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge

A Comparative Study of SPWM on A 5-Level H-NPC Inverter

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 12 December, 2013 Page No Abstract

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

A Single-Phase Carrier Phase-shifted PWM Multilevel Inverter for 9-level with Reduced Switching Devices

SWITCHING AND REDUCTION OF COMMON MODE VOLTAGE OF MULTILEVEL- H-CASCADED CONVERTER FOR MEDIUM VOLTAGES

An Advanced Multilevel Inverter with Reduced Switches using Series Connection of Sub Multilevel Inverters

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE

COMPARATIVE STUDY OF DIFFERENT TOPOLOGIES OF FIVE LEVEL INVERTER FOR HARMONICS REDUCTION

Series Parallel Switched Multilevel DC Link Inverter Fed Induction Motor

A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of Power Switches

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme

Simulation of Cascade H-Bridge Multilevel Inverter With Equal DC Voltage Source

Speed Control of Induction Motor using Multilevel Inverter

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

Multilevel Inverters for Large Automotive Electric Drives

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

International Journal of Advance Engineering and Research Development

Analysis of Cascaded Multilevel Inverters with Series Connection of H- Bridge in PV Grid

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

Hybrid Modulation Techniques for Multilevel Inverters

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER

DESIGN 3-PHASE 5-LEVELS DIODE CLAMPED MULTILEVEL INVERTER USING MATLAB SIMULINK

Induction Motor Drive using SPWM Fed Five Level NPC Inverter for Electric Vehicle Application

A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE

Analysis of New 7- Level an Asymmetrical Multilevel Inverter Topology with Reduced Switching Devices

New Multi Level Inverter with LSPWM Technique G. Sai Baba 1 G. Durga Prasad 2. P. Ram Prasad 3

ABSTRACT I. INTRODUCTION

Keywords Cascaded Multilevel Inverter, Insulated Gate Bipolar Transistor, Pulse Width Modulation, Total Harmonic Distortion.

Five-level active NPC converter topology: SHE- PWM control and operation principles

THD Minimization in Cascade Multi-level Inverters with a Few DC Sources and Optimum Voltage Levels

A New Multilevel Inverter Topology of Reduced Components

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Performance of Sinusoidal Pulse Width Modulation based Three Phase Inverter

Harmonic Evaluation of Multicarrier Pwm Techniques for Cascaded Multilevel Inverter

Design and Evaluation of PUC (Packed U Cell) Topology at Different Levels & Loads in Terms of THD

MMC based D-STATCOM for Different Loading Conditions

A Four-Level Inverter Based Drive with a Passive Front End

Harmonic Reduction in Induction Motor: Multilevel Inverter

IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p

Medium Voltage Three-level Converters for the Grid Connection of a Multi-MW Wind Turbine

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

MLI HYBRID STATCOM WITH WIDE COMPENSATION RANGE AND LOW DC LINK VOLTAGE

EVALUATION OF VARIOUS UNIPOLAR MULTICARRIER PWM STRATEGIES FOR FIVE LEVEL FLYING CAPACITOR INVERTER

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding

Minimization of Switching Devices and Driver Circuits in Multilevel Inverter

HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS.

Reduction in Total Harmonic Distortion Using Multilevel Inverters

Analysis of switched inductor Z-source modified cascaded H-Bridge multilevel inverter

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution

SHE-PWM switching strategies for active neutral point clamped multilevel converters

THD Minimization of a Cascaded Nine Level Inverter Using Sinusoidal PWM and Space Vector Modulation

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters

International Journal of Advance Engineering and Research Development

Asymmetrical Dual Bridge 7-level Dc-Link Inverter Topology

Four two-level PWM rectifiers controlled by Lyapunov function for stabilisation of DC sources of five-level NPC-VSI

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches

COMPARISON BETWEEN FIVE-LEVEL FLYING CAPACITOR STRUCTURES

CARRIER BASED PWM TECHNIQUE FOR HARMONIC REDUCTION IN CASCADED MULTILEVEL INVERTERS

THD Analysis for 3-Phase 5-Level Diode Clamped Multilevel Inverter Using Different PWM Techniques

APPLICATION OF SVPWM TECHNIQUE TO THREE LEVEL VOLTAGE SOURCE INVERTER

Transcription:

A hybrid multilevel inverter topology for drive applications Madhav D. Manjrekar Thomas A. Lipo Department of Electrical and Computer Engineering University of Wisconsin Madison 1415 Engineering Drive Madison, WI 53706, USA Abstract Use of multilevel inverters is becoming popular in the recent years for high power applications. arious topologies and modulation strategies have been reported for utility and drive applications in the recent literature. This paper is devoted to the investigation of a 500 HP induction machine drive based on a sevenlevel 4.5 k hybrid inverter. The topological structure and operating principles of the proposed approach are presented. arious design criteria, spectral structure and other practical issues such as capacitor voltage balancing are discussed. The feasibility of the proposed approach is verified by computer simulations. I. INTRODUCTION Multilevel power conversion has been receiving increasing attention in the past few years for high power applications [1], [2]. Numerous topologies have been introduced and studied extensively for utility and drive applications in the recent literature. These converters are suitable in high voltage and high power applications due to their ability to synthesize waveforms with better harmonic spectrum and attain higher voltages with a limited maximum device rating. The early interest in multilevel power conversion technology was perhaps triggered by Nabae et al. [3] who introduced a neutral point clamped topology. The resultant threelevel waveform has considerably better spectral performance compared to that of the conventional voltage source inverter. The improvement in the spectral structure of output waveforms in using multiple levels was reiterated by Bhagwat and Stefanovic [4]. Subsequently, the original neutral point clamped topology has been extended to higher number of levels using the similar principle of clamping the intermittent levels with diodes [5]. In addition to improving the waveform quality, these multilevel inverters substantially reduce voltage stress on the devices. Such multilevel inverters are generically known as diode clamped inverters. However, in this type of inverters, the required voltage blocking capability of the clamping diodes varies with the levels. This may result in the requirement of multiple diodes at higher levels. So an alternative multilevel structure where the voltage across an open switch is constrained by clamping capacitors instead of clamping diodes has been proposed by Meynard [6]. These inverters are commonly known as flying capacitor inverters. Using multiple single level inverters to synthesize multilevel waveforms was initially realized through phase shifting of multiple single level converter output voltage waveforms and adding them vectorially using series connected transformer windings [7]. However when the number of levels increases beyond three or five, this approach becomes difficult to realize due to the requirement of multiple transformer windings. As an alternative method, a series connection of single phase inverters with multiple dedicated buses to realize multilevel waveforms was probably first presented in [8]. This modular approach has been investigated for utility applications [9], [10]. Recent trends in the power semiconductor technology indicate a tradeoff in the selection of power devices in terms of switching frequency and voltage sustaining capability [11]. Normally, the voltage blocking capability of faster devices such as Insulated Gate Bipolar Transistors (IGBT) and the switching speed of high voltage devices like Gate TurnOff (GTO) thyristors is found to be limited. With the aforementioned modular topologies, realization of the multilevel inverters using a hybrid approach involving GTO thyristors and IGBTs operating in synergism is possible. This paper presents the investigation of a 500 HP induction machine drive based on a sevenlevel 4.5 k hybrid inverter. The proposed topology is a combination of a GTO inverter with a 3 k bus and a IGBT inverter with a 1.5 k bus. Using appropriate modulation strategy, it will be possible to synthesize stepped waveforms with seven voltage levels viz. 4.5 k, 3 k, 1.5 k, 0, 1.5 k, 3 k, 4.5 k. In addition to this new concept, a hybrid modulation strategy which incorporates stepped synthesis in conjunction with variable pulse width of the consecutive steps is presented. Under this modulation strategy, while the GTO inverter will be modulated to switch only at fundamental frequency of the inverter output, the IGBT inverter will be used to switch at a higher frequency thereby providing additional improvements in the waveform quality. With the proposed hybrid topology, the effective spectral response of the output depends on the IGBT switching, while the overall voltage generation capability is decided by the voltage ratings of the GTO thyristors. The following section of this paper presents a review of the multilevel inverter based drives reported in the

literature. A brief description of the conventional structure of Hbridge multilevel inverter is included in Section III. A modified configuration of this topology with nonidentical dc voltage sources is described in section I. It is observed that the number of synthesized levels increases exponentially with a binary arrangement of dedicated dc voltage sources. Section describes the proposed hybrid configuration for a 500 HP induction machine drive application. The topology and operating principles of this approach are discussed in this section. Simulation results verifying the efficacy of the proposed approach are given in Section I. A summary of various results and a comparison of the proposed approach with the topologies reported in literature is presented in the concluding section. II. MULTILEEL INERTER BASED DRIES So far, interest in the multilevel power conversion has been largely restricted to utility applications such as static Ar compensation, active filtering etc [1]. However, this technology has been recently investigated for induction machine drive applications [12][14]. Menzies et al. have proposed a fivelevel GTO inverter for a 22 MA induction machine drive [12]. A single phase of the diode clamped multilevel structure proposed in their paper is shown in Fig. 1. The remaining two phases have a similar switchdiode configuration and share the same dc bus. It may be observed from this figure that a fivelevel waveform can be synthesized at point A by tapping five points (A 1, A 2, A 3, A 4, A 5 ) on the quadruple dc bus. The circuit can be thought of as a multiplexer, attaching output to one of the five available voltage levels. All the capacitors are identical and the dc voltage levels are 2.65 k each. So a peak voltage of ± 5.3 k can be realized by clamping the phase output to the top (A 1 ) or bottom (A 5 ) of the dc bus. This can be done by closing a set of four switches viz. S 1 S 4 or S 5 S 8. The inner voltage levels 2.65 k, 0, 2.65 k can be synthesized by closing switches S 2 S 5 or S 3 S 6 or S 4 S 7 respectively. This creates a current path connecting two of the clamp diodes backtoback. The other end of these backtoback clamp diodes is connected to one of the voltage taps (A 2, A 3, A 4 ) along the dc bus. These diodes also prevent the undesired voltage level from getting connected to the output. It has been demonstrated that the synthesis of 3 φ 7.46 k lineline ac voltage is possible using 4.5 k GTO thyristors with this topology. However, since the switching capability of the GTO thyristors is limited at higher frequencies, the spectral performance is hampered. The authors also demonstrate that the dc bus is loaded nonuniformly for an induction machine drive application thus causing a problem of capacitor voltage balancing. Sinha and Lipo [13] have recently presented a fourlevel IGBT rectifierinverter system for drive applications. A diode clamped structure is used on both rectifier and inverter ends. A single phase of the proposed topology is illustrated in Fig. 2. The operating principle of the fourlevel inverter is similar to that of the fivelevel inverter as discussed earlier. The fourlevel waveform is synthesized by a triple dc bus which allows four distinct levels. A set of three switches is closed at any given time which connects the output phase to one of these four levels. A 1 2.65 k 2.65 k 2.65 k 2.65 k Fig. 1. Simplified schematic of a single phase of a fivelevel diode clamped inverter. A in A 2 A 3 A 4 A 5 Fig. 2. Simplified schematic of a single phase of a fourlevel diode clamped rectifier inverter. S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 A A out

In addition to the solution for capacitor voltage balancing, a control strategy to ensure a unity power factor on the utility side is also discussed. The authors propose to use IGBTs which offer better switching characteristics than the GTO thyristors. However, it is difficult to scale this approach to a higher voltage level owing to the upper bound on the IGBT voltage ratings. Moreover, the diode clamped topology of this converter makes it cumbersome and difficult to realize such an inverter beyond fourfive levels. III. HBRIDGE MULTILEEL INERTER References [9], [10], [14] have proposed a per phase power conversion scheme for synthesizing multilevel waveforms. The authors present a modular topology as illustrated in Fig. 3 to realize multilevel power conversion. In this approach, a number of full bridge single phase inverters with dedicated isolated dc bus capacitors/voltage sources are connected together in series to form a high voltage inverter for each phase of the system. Fig. 3 shows two such single phase inverters using IGBTs connected in series to form a single phase of the multilevel inverter. The remaining two phases have a similar switch configuration and respective independent dc voltage sources. It may be seen that the inverter is capable of synthesizing five distinct voltage levels (±2, ±, 0) if all the dc bus voltages are equal to. I. MODIFIED HBRIDGE MULTILEEL INERTER As mentioned in the last section, an Hbridge multilevel inverter offers numerous advantages like modularity, least number of switches for a given number of levels, simple capacitor voltage balancing etc. As shown in Fig. 3, the reported topologies for Hbridge multilevel inverters have identical dc voltage levels. In general, such a multilevel inverter with n equal dc voltage levels can offer 2n 1 distinct voltage levels at the phase output. The performance attributes of the output waveform in terms of number of levels can be further enhanced by using unequal dc voltage levels. For instance, a set of cascaded inverters with dc voltages varying in binary fashion gives an exponential increase in the number of levels. For n such cascaded inverters, with dc voltage levels varying in binary fashion, one can achieve 2 n1 1 distinct voltage levels. A generalized structure of an Hbridge multilevel inverter with nonuniform dc levels is illustrated in Fig. 4. 2 n1 A 4 Neutral 2 Fig. 3. Simplified schematic of a single phase of a fivelevel Hbridge inverter with two equal dc voltage levels. The advantage of this topology is that it provides flexibility for expansion of the number of levels easily without introducing undue complexity in the power circuit. Moreover, it requires same number of switches as in a diode clamped topology to achieve a given number of (odd) voltage levels. However this configuration requires multiple dedicated dc buses which makes it an expensive solution. On the other hand, since the dc voltage sources are independent, the problem of capacitor voltage balancing is obviated. Fig. 4. Simplified schematic of a 2 n1 1 level Hbridge inverter with n dc voltage levels arranged in binary fashion. It is interesting to observe a close resemblance of this binary configuration with the process of analog and digital interconversion. As in a digital to analog converter, one can obtain all the combinations of voltages arranged in binary fashion here. For instance, it is possible to obtain 0, ±1, ±2, and ±3 units of voltages (i.e. seven levels) with only two levels ( and 2) of dc sources. It may be observed that the conventional Hbridge configuration with identical dc

sources would need three such levels. A comparison of this proposed modified Hbridge topology with the existing topologies is presented in Table I. The attributes selected for comparison are required number of main devices (diodes are not included), number of dc buses or capacitors and number of levels obtained at the output waveform. It may be observed that with the same number of devices and dc buses, the proposed configuration offers better performance in terms of levels than the rest of the topologies. TABLE I COMPARISON OF TOPOLOGIES FOR MULTILEEL INERTERS inverter output while the IGBT inverter is used to switch at a higher frequency. The proposed static transfer characteristics for the GTO and IGBT switch modulators are illustrated in Figs. 7 and 8. 3 k A B C Topology Diode Clamped Flying Capacitor Conventional Modified Primary Devices DC buses (Capacitors) Levels in the output 6N N N 1 6N 3N 2 N 1 12N 3N 2N 1 12N 3N 2 N1 1 1.5 k Fig. 6. Simplified schematic of the power circuit of the proposed hybrid sevenlevel Hbridge inverter.. PRACTICAL IMPLEMENTATION OF A HYBRID SEENLEEL INERTER DRIE 3 k Output The modified Hbridge topology offers a distinctive advantage in the number of levels it can generate with a same number of dc sources and power devices when compared to the conventional configuration. However, it may be noted that the stress on the power device in this configuration is proportional to the voltage level it is used. Hence the devices at the higher end of the inverter will be required to have a larger voltage blocking capability than those which are at a lower end. For the 4.5 k/500 HP induction machine drive system under investigation, it is proposed to use a combination of a GTO inverter with a 3 k bus and a IGBT inverter with a 1.5 k bus respectively. It may be observed that, with such a configuration, it is possible to synthesize stepped waveforms with voltage levels 4.5 k, 3 k, 1.5 k, 0, 1.5 k, 3 k and 4.5 k using only six independent dc voltage sources. A simplified schematic of the power circuit of the topology is illustrated in Fig. 6. As shown in Fig. 6, the higher voltage levels (±3 k) are synthesized using GTO inverters while the lower voltage levels (±1.5 k) are synthesized using IGBT inverters. But it is well known that the switching capability of GTO thyristors is limited at higher frequencies [11]. Hence a hybrid modulation strategy which incorporates stepped synthesis in conjunction with variable pulse width of the consecutive steps is proposed. Under this modulation strategy, the GTO inverter is modulated to switch only at fundamental frequency of the 1.5 k 3 k 1.5 k Command Fig. 7. Static transfer characteristics of the GTO switch modulator. Fig. 7 illustrates the static transfer characteristics of the GTO modulator. As may be observed from this figure, the GTO inverter is capable of synthesizing a square wave of amplitude 3 k. This inverter contributes to the output when the command signal is greater than ±1.5 k (half of ±3 k). (Please note that the term command signal is used to specify the desired output in this paper). If the command is smaller than 1.5 k, the IGBT inverter synthesizes the pulse width modulated waveform which switches the output between 1.5 k and 0. The static transfer characteristics of the IGBT inverter are illustrated in Fig. 8. After the command signal crosses 1.5 k threshold, the IGBT inverter effectively adds or subtracts 1.5 k from the 3 k output

synthesized by the GTO inverter. The IGBT inverter is switched between 1.5 k and 0 until the command signal reaches 3 k. This effectively subtracts 1.5 k from the 3 k synthesized by the GTO inverter. Beyond 3 k, the IGBT inverter flips between 1.5 k and 0 thus adding 1.5 k to the 3 k generated by the GTO inverter. A similar modulation strategy is applied for negative voltage synthesis. The modulation process and the state of the inverters for various levels of command signals is summarized in Table II. fundamental frequency switching for GTO thyristors and open loop PWM control for IGBTs is employed. The schematic of the modulator built in MATLABSimulink is illustrated in Fig. 9. 1.5 Output 1.5 k 1.5 k 1.5 k 1.5 k Command Fig. 9. Schematic of the modulator for the proposed hybrid multilevel inverter. Fig. 8. Static transfer characteristics of the IGBT switch modulator. TABLE II MODULATION STRATEGY Command Signal (Desired Output) GTO Inverter IGBT Inverter Between 4.5 and 3.0 k 3 k 0 1.5 k Between 3.0 and 1.5 k 3 k 0 1.5 k Between 1.5 and 0.0 k 0 k 0 1.5 k Between 0.0 and 1.5 k 0 k 0 1.5 k Between 1.5 and 3.0 k 3 k 0 1.5 k Between 3.0 and 4.5 k 3 k 0 1.5 k a b : Switching between a and b With this proposed hybrid topology and modulation strategy, the effective spectral response of the output depends on the IGBT switching, while the overall voltage generation is decided by the voltage ratings of the GTO thyristors. This is demonstrated in the illustration of a typical synthesized waveform in the simulation results presented in the following section. I. SIMULATION RESULTS The feasibility of the proposed approach is verified using computer simulations. A model of the sevenlevel hybrid inverter is constructed in MATLABSimulink software. A hybrid modulation strategy which combines As shown in Fig. 9, the command signal is compared with a threshold of ±1.5 k. If it is larger than the threshold, GTO inverter contributes to the output with ±3 k. The difference between the output of the GTO inverter and the command signal is then compared against a PWM (ramp) signal to modulate the IGBT inverter. The resultant phase voltage obtained from a command signal with modulation index 0.9 is illustrated in Fig. 10. The switching patterns for the GTO thyristors and IGBTs are shown in Figs 11 and 12. 5 k 0 5 0 0.005 0.01 0.015 Time (second) Fig. 10. Typical phase voltage waveform synthesized by the proposed sevenlevel hybrid inverter. It may be seen that although the GTO inverter switching is stepped (Fig. 11), the overall waveform quality is

mainly decided by the intermediate IGBT inverter switching (Fig. 12). The GTO inverter participates in synthesizing the required high voltage level while the IGBT inverter acts as a harmonic compensator. 3 2 1 k 0 1 2 3 0 0.005 0.01 0.015 Fig. 11. GTO thyristor switching. which can switch at faster rates are known to have limited voltage blocking capability and vice versa. This paper has proposed a synergistic approach which combines the fast switching ability of IGBTs and large voltage blocking capability of GTO thyristors. The hybrid multilevel inverter presented in this paper is realized using a combination of a high voltage GTO inverter and a fast switching IGBT inverter. It is shown that the spectral performance is enhanced by the IGBT modulation while a large voltage synthesis is contributed by the GTO inverter. Moreover, this approach enables one to obtain a sevenlevel conversion with only two dc bus levels. This reduces the cost and effort spent in capacitor voltage balancing. The other significant advantages are that the switch count is lower for same number of levels and the switching losses are curtailed owing to the hybrid modulation strategy. Finally, a brief comparison of the proposed configuration for sevenlevel voltage generation with the topologies reported in literature is presented in Table III. It may be observed that the proposed approach offers the same number of levels at the output with a least number of primary devices and dc voltage sources. TABLE III COMPARISON OF SEENLEEL INERTER TOPOLOGIES 1.5 1 0.5 k 0 0.5 1 1.5 0 0.005 0.01 0.015 Topology Diode Clamped Flying Capacitor Conventional Modified Primary Devices DC buses (Capacitors) Levels in the output 36 6 7 36 16 7 36 9 7 24 6 7 REFERENCES Fig. 12. IGBT switching. II. CONCLUSIONS A hybrid approach for multilevel power conversion has been presented. The proposed topology results from modifying the conventional structure of an Hbridge multilevel inverter. It is demonstrated that by employing nonidentical dc voltage sources (particularly a binary arrangement), one can obtain significant increase in the number of synthesized levels. With the proliferation of semiconductor technology, a tradeoff has been observed in the selection of power devices in terms of switching frequency and voltage blocking capability. Typically, devices

[ 1] J.S. Lai and F.Z. Peng, Multilevel Converters A new breed of power converters, Conference Record of the IEEEIAS Annual Meeting, 1995, pp. 23482356. [ 2] M. Manjrekar and G. enkataramanan, Advanced topologies and modulation strategies for multilevel inverters, Conference Record of the IEEEPESC, 1996, pp. 10131018. [ 3] A. Nabae, I. Takahashi, H. Akagi, A new neutral point clamped PWM inverter, IEEE Trans. On I.A., ol. IA 17, No. 5, Sep/Oct 1981, pp. 518523. [ 4] P.M. Bhagwat and.r. Stefanovic, Generalized structure of a multilevel PWM inverter, IEEE Transactions on I.A., ol. IA19, No. 6, Nov/Dec 1983, pp. 10571069. [ 5] M. Carpita, S. Tenconi, M. Fracchia, A novel multilevel structure for voltage source inverter, Proceedings of the EPE, 1991, pp. 9094. [ 6] T.A. Meynard and H. Foch, Multilevel conversion : High voltage choppers and voltage source inverters, Conference Record of the IEEEPESC, 1992, pp. 397 403. [ 7] IEEE Power Engineering Society, FACTS Overview, IEEE Press, 1995, Catalog No. 95 TP 108. [ 8] M. Marchesoni, High performance current control techniques for applications to multilevel high power voltage source inverters, Conference Record of the IEEEPESC, 1989, pp. 672682. [ 9] F.Z. Peng, J.S. Lai, J. McKeever, J. ancoevering, A multilevel voltage source inverter with separate dc sources for static ar generation, Conference Record of the IEEEIAS Annual Meeting, 1995, pp. 25412548. [10]N. Mohan and G. Kamath, A novel per phase approach of power electronic interface for power system applications, Proceedings of the NAPS, 1995, pp. 457 461. [11]B.J. Baliga, Power Semiconductor Devices, PWS Publishing Company, 1996. [12]R.W. Menzies, P. Steimer, J.K. Steinke, Fivelevel GTO inverters for large induction motor drives, IEEE Transactions on I.A., ol. 30, No. 4, Jul/Aug 1994, pp. 938944. [13]G. Sinha and T.A. Lipo, A four level rectifierinverter system for drive applications, Conference Record of the IEEEIAS Annual Meeting, 1996, pp. 980 987. [14] R.H. Osman, A novel medium voltage drive topology with superior input and output power quality, Report prepared by Robicon division of high voltage engineering.