RE46C317/18. Piezoelectric Horn Driver with Boost Converter. Features: Description: Applications: Package Types. Typical Application

Similar documents
MTCH112. Dual Channel Proximity Touch Controller Product Brief FEATURES PACKAGE TYPE SOIC, DFN GENERAL DESCRIPTION 8-PIN SOIC, DFN DIAGRAM FOR MTCH112

TC53. Voltage Detector. Not recommended for new designs Please use MCP111/2 TC53. General Description: Features: Typical Applications:

RE46C100. Piezoelectric Horn Driver Circuit HORNS HRNEN HORNB. Package Types. Features: General Description: Functional Block Diagram

MTCH810. Haptics Controller Product Brief. Description: Features: Pin Description: Package Type: DESCRIPTION MTCH810

AN1476. Combining the CLC and NCO to Implement a High Resolution PWM BACKGROUND INTRODUCTION EQUATION 2: EQUATION 1: EQUATION 3:

TC4426AM/TC4427AM/TC4428AM

Low Cost Single Trip Point Temperature Sensor. Part Number Voltage Operation Package Ambient Temperature

TC620/TC621. 5V, Dual Trip Point Temperature Sensors. Features: Package Type. Applications: Device Selection Table. General Description:

TABLE 1: REGISTERS ASSOCIATED WITH SLOPE COMPENSATOR MODULE

TC mA CMOS LDO TC1108. General Description. Features. Applications. Typical Application. Device Selection Table. Package Type SOT-223

TC59. Low Dropout, Negative Output Voltage Regulator TC59. Features. General Description. Applications. Functional Block Diagram

2, 5 and 8-Channel Proximity/Touch Controller Product Brief

High-Speed N-Channel Power MOSFET

High-Speed N-Channel Power MOSFET. PDFN 5 x 6 S

TC mA Fixed Output CMOS LDO. Features. Package Type. Applications. Device Selection Table. General Description. Typical Application

TC1272A. 3-Pin Reset Monitor. General Description. Features. Applications. Package Type. Typical Application Circuit TC1272A TC1272A.

MIC5528. High Performance 500 ma LDO in Thin and Extra Thin DFN Packages. General Description. Features. Applications.

AN1085. Using the Mindi Power Management Simulator Tool INTRODUCTION ACCESSING MINDI ON MICROCHIP S WEB SITE

AN763. Latch-Up Protection For MOSFET Drivers INTRODUCTION. CONSTRUCTION OF CMOS ICs PREVENTING SCR TRIGGERING. Grounds. Equivalent SCR Circuit.

TC1240/TC1240A. Positive Doubling Charge Pumps with Shutdown in a SOT-23 Package. Features. General Description. Applications

TB3121. Conducted and Radiated Emissions on 8-Bit Mid-Range Microcontrollers INTRODUCTION ELECTROMAGNETIC COMPATIBILITY CONDUCTED EMISSIONS

9A High-Speed MOSFET Drivers. 8-Pin 6x5 DFN-S (2) INPUT EP 9

TC7662A. Charge Pump DC-to-DC Converter. Features. Package Type. General Description. Applications. Device Selection Table. 8-Pin PDIP 8-Pin CERDIP

AN1312. Deviations Sorting Algorithm for CSM Applications INTRODUCTION DESCRIPTION. The Second Concept Most Pressed Button

High-Speed N-Channel Power MOSFET

TCM828/TCM829. Switched Capacitor Voltage Converters. Features. Description. Applications. Package Type. Typical Application Circuit

TC7660S. Super Charge Pump DC-to-DC Voltage Converter. Features: Package Types. General Description: Applications:

High-Speed N-Channel Power MOSFET

TC7660. Charge Pump DC-to-DC Voltage Converter. Package Types. Features. General Description. Applications. Functional Block Diagram TC7660

MCP1406/07. 6A High-Speed Power MOSFET Drivers. General Description. Features. application.

HV825. High-Voltage EL Lamp Driver IC. General Description. Features. Applications. Typical Application Circuit

PIC16(L)F72X Family Silicon Errata and Data Sheet Clarification

MCP2515. MCP2515 Rev. B Silicon Errata. 3. Module: CAN Module. 1. Module: Oscillator Module. 4. Module: CAN Module. 2. Module: RAM Module

TC1410/TC1410N. 0.5A High-Speed MOSFET Drivers. Features. General Description. Package Type. Applications. 8-Pin MSOP/PDIP/SOIC TC1410N TC1410

TC57. Line Regulator Controller TC57. General Description. Features. Applications. Functional Block Diagram. Device Selection Table.

1.5A Dual High-Speed Power MOSFET Drivers. Temp. Range

DN2470. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications

TC mA CMOS LDO with Shutdown ERROR Output and Bypass. Features. General Description. Applications. Typical Application. Device Selection Table

TC1121. Obsolete Device. 100mA Charge Pump Voltage Converter with Shutdown. Features: Package Type. Applications: General Description:

TC1047/TC1047A. Precision Temperature-to-Voltage Converter. General Description. Applications. Block Diagram. Features.

TC4423/TC4424/TC A Dual High-Speed Power MOSFET Drivers. Features. General Description. Applications. Package Types (1) 8-Pin PDIP

TC1232. Microprocessor Monitor. General Description: Features: Block Diagram. Package Types. Device Features

AN1322. PIC MCU KEELOQ /AES Receiver System with Acknowledge TRANSMITTER LEARNING INTRODUCTION SYSTEM OVERVIEW RECEIVER FUNCTIONALITY

Voltage Detector. TC54VC only

PIC16F506. PIC16F506 Rev. C0 Silicon Errata and Data Sheet Clarification. Silicon Errata Issues

New Peripherals Tips n Tricks

Integrated Temperature Sensor & Brushless DC Fan Controller with FanSense Detect & Over-Temperature

DN2450. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications

TC4421A/TC4422A. Functional Block Diagram V DD. TC4421A Inverting. Output. 300 mv. Cross-Conduction Reduction and Pre-Drive Circuitry.

AN1739. Improving Battery Run Time with Microchip s 4 µa Quiescent Current MCP16251/2 Boost Regulator PRIMARY BATTERY CONSIDERATIONS INTRODUCTION

Programmable Gain Amplifier (PGA)

PIC16F506. PIC16F506 Rev. B1 Silicon Errata and Data Sheet Clarification. Silicon Errata

MCP1401/02. Tiny 500 ma, High-Speed Power MOSFET Driver. General Description. Features. Applications. Package Types

AN1213. Powering a UNI/O Bus Device Through SCIO INTRODUCTION CIRCUIT FOR EXTRACTING POWER FROM SCIO

TC682. Inverting Voltage Doubler. General Description: Features: Applications: Functional Block Diagram. Device Selection Table. Package Type TC682

AN1291. Low-Cost Shunt Power Meter using MCP3909 and PIC18F25K20 OVERVIEW HARDWARE DESCRIPTION

Low-Power Techniques for LCD Applications RTH = (2R*R)/(2R+R) RTH = 2R 2 /3R RTH = 2R/3 RSW = 4.7K RCOM = 0.4K

PIC32MX450F256L 100-pin to 100-pin TQFP USB Plug-In Module (PIM) Information Sheet

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps

TC4426A/TC4427A/TC4428A

PIC24FJ128GC010 FAMILY

TC1413/TC1413N. 3A High-Speed MOSFET Drivers. General Description. Features. Package Type. Applications. 8-Pin MSOP/PDIP/SOIC

TB3126. PIC16(L)F183XX Data Signal Modulator (DSM) Technical Brief INTRODUCTION

TC Bit Digital-to-Analog Converter with Two-Wire Interface TC1320. General Description. Features. Applications.

PIC16F87/88. PIC16F87/88 Rev. B1 Silicon Errata. 1. Module: Internal RC Oscillator

TB3103. Buck Converter Using the PIC16F753 Analog Features PERFORMANCE SPECIFICATIONS INTRODUCTION ELECTRICAL SPECIFICATIONS

TC620/TC621. 5V, Dual Trip Point Temperature Sensors. Features: Package Type. Applications: Device Selection Table. General Description:

TC32M. ECONOMONITOR 3-Pin System Supervisor with Power Supply Monitor and Watchdog. Features: General Description: Applications:

TC1070/TC1071/TC ma, 100 ma and 150 ma Adjustable CMOS LDOs with Shutdown. Features: Description: Applications: Typical Application

TC650/TC651. Tiny Integrated Temperature Sensor & Brushless DC Fan Controller with Overtemperature Alert. Features. General Description.

AN1332. Current Sensing Circuit Concepts and Fundamentals CURRENT SENSING RESISTOR INTRODUCTION. Description. Microchip Technology Inc.

AN1321. KEELOQ Microcontroller-Based Transmitter with Acknowledge DUAL TRANSMITTER OPERATION INTRODUCTION RECEIVER ACKNOWLEDGE SAMPLE BUTTONS/WAKE-UP

TB3073. Implementing a 10-Bit Digital Potentiometer using a Quad 8-Bit Digital Potentiometer Technical Brief INTRODUCTION.

High-Precision 16-Bit PWM Technical Brief MODE<1:0> PWM Control Unit. Offset Control OFM<1:0> E R U/D PWMxTMR. PHx_match. Comparator.

AN1328. KEELOQ with XTEA Microcontroller-Based Transmitter with Acknowledge INTRODUCTION DUAL TRANSMITTER OPERATION BACKGROUND RECEIVER ACKNOWLEDGE

HV5308 / HV Channel, Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs. Features. Description

PIC18F2420/2520/4420/4520

TC115. PFM/PWM Step-Up DC/DC Converter. Features. Package Type. General Description. Applications. Functional Block Diagram TC115

TC1275/TC1276/TC1277. Obsolete Device. 3-Pin Reset Monitors for 3.3V Systems. Features. General Description. Applications. Device Selection Table

MTD6501C/D/G. 3-Phase Brushless DC Sinusoidal Sensorless Fan Motor Driver. Features. Description. Package Types

TC429. 6A Single High-Speed, CMOS Power MOSFET Driver. General Description. Features. Applications. Package Types CERDIP/PDIP/SOIC TC429

PIC12(L)F1822/PIC16(L)F1823

PIC18F24J10/25J10/44J10/45J10

MCP ma, High PSRR, Low Quiescent Current LDO. Features: Description: Applications: Package Types. Related Literature:

AN1292 Tuning Guide 1.1 SETTING SOFTWARE PARAMETERS. STEP 1 Fill in the tuning_params.xls Excel spreadsheet with the following parameters:

MCP9509/10. Resistor-Programmable Temperature Switches. Features. Description. Package Types. Applications. Typical Performance

PIC16F818/819. PIC16F818/819 Rev. B0 Silicon Errata Sheet

MCP Single Cell Lithium-Ion Charge Management Controller. Features. Description. Applications. Typical Application Circuit.

TC2014/2015/ ma, 100 ma, 150 ma CMOS LDOs with Shutdown and Reference Bypass. Features. General Description. Applications. Typical Application

MCP ma, High PSRR, Low Quiescent Current LDO. Features: Description: Applications: Package Types. Related Literature:

PIC16(L)F1526/1527 Family Silicon Errata and Data Sheet Clarification DEV<8:0>

ISOLATOR UNIT SPECIFICATION Isolator Unit DANGER INTRODUCTION DEVICE SUPPORT HARDWARE SETUP

Section 45. High-Speed Analog Comparator

TC913A/TC913B. Dual Auto-Zeroed Operational Amplifiers. Features: Package Type. General Description: Applications: Device Selection Table

ATA6570. ATA6570 Silicon Errata and Data Sheet Clarification. 2. Module: CAN Bus Wake-Up Detection System Reinitialization

TC125/TC126. PFM Step-Up DC/DC Regulators. Features: General Description: Applications: Device Selection Table. Typical Application.

MCP9700/9700A MCP9701/9701A

Current Bias Generator (CBG)

MCP1252/3. Low-Noise, Positive-Regulated Charge Pump. Features: Description: Package Types. Applications:

TC1411/TC1411N. 1A High-Speed MOSFET Drivers. Features. Description. Package Types. Applications. 8-Pin MSOP/PDIP/SOIC

Transcription:

Piezoelectric Horn Driver with Boost Converter Features: 3V Operation Low Quiescent Current 10V Boost Converter Low Horn Driver On-Resistance Compatible with RE46C117 Applications: Smoke Detectors CO Detectors Personal Security Products Electronic Toys Description: The RE46C317/18 are CMOS piezoelectric horn driver ICs with built-in boost converter. They are intended for use in 3V battery or battery-backed applications. The circuits feature a boost converter and a driver circuit suitable for driving a piezoelectric horn. The RE46C317/18 are compatible with the RE46C117 device and offer lower standby current. The RE46C317 has three valid states of Horn Enable (tri-state, low and high), while the RE46C318 has only two valid states, low and high. Package Types RE46C317/18 PDIP, SOIC FEED 1 8 HRNEN V DD LX V SS 2 3 4 7 6 5 HORNS HORNB V O Typical Application RE46C317/18 R 1 1.5M C 4 R 2 200K RE46C317 Only High FEED HRNEN 1nF Tri-state V DD HORNS Low L 1 2V to 5V V 1 C 1 10 μh LX V SS HORNB V O RE46C318 Only High 10 μf C 3 10 μf Low D 1 Note 1: Schottky diode D 1 must have the maximum peak current rating of at least 1A. For best results, the forward voltage spec should be less than 0.5V at 1A. 2: Inductor L 3 must have the maximum peak current rating of at least 1A. For best results, the DC resistance should be less than 0.5. 2012-2013 Microchip Technology Inc. DS20002301B-page 1

R 2 R 3 RE46C317/18 Functional Block Diagram V O V DD HRNEN Tri-state Logic Level Shifter (RE46C317 Only) Horn Driver HORNB Standard Logic Level Shifter (RE46C318 Only) HORNS R 1 FEED + LX Voltage Reference - + Gate Control - V SS DS20002301B-page 2 2012-2013 Microchip Technology Inc.

1.0 ELECTRICAL CHARACTERISTICS 1.1 Absolute Maximum Ratings V DD...5.5V V OUT...12.5V Input Voltage Range Except FEED, LX...V IN =V SS.3V to V DD +.3V FEED Input Voltage Range...V INFD =-10V to+22v LX Input Voltage...V INLX =V OUT +0.8V Input Current except FEED, LX... I IN =10mA LX Current (Peak)...I INLX =1.0A Operating Temperature...T A =-10 C to +60 C Storage Temperature...T STG =-55 C to +125 C Continuous Operating Current (HORNS, HORNB, V O )... I O =40mA Maximum Human Body Model ESD...1500V Notice: Stresses above those listed under Maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. This product utilizes CMOS technology with static protection; however proper ESD prevention procedures should be used when handling this product. Damage can occur when exposed to extremely high static electrical charge. DC ELECTRICAL CHARACTERISTICS RE46C317 Unless otherwise indicated, all parameters apply at T A = -10 C to +60 C, V DD =3V, V SS =0V, C 3 =10µF. Typical values are at T A =+25 C Parameter Symbol Test Pin Min. Typ. Max. Units Conditions Supply Voltage V DD 2 2 5 V Operating Standby Supply Current I DD1 2 0.5 1 µa HRNEN = Float; No loads Standby I VO I VO1 5 0 0.3 µa HRNEN = Float; No loads Quiescent Supply Current I DD2 2 27 49 µa HRNEN = Low; No Loads; V O =11V; V LX =0.5V Quiescent I VO I VO2 5 71 115 µa HRNEN = Low; No Loads; V O =11V; V LX =0.5V Supply current I SUP 2 300 µa HRNEN = Low; No Loads, Boost Running Input Current for Tri-state I IT 8-5 5 µa HRNEN = Float (Note 4) Input Voltage High V IHH 8 2.6 V HRNEN input V IHF 1 7 V FEED input; V O =10V Note 1: The boost converter in Boost mode (normal V O = 10V) can draw current pulses of ~0.8A and therefore is very sensitive to series resistance. The critical components of this resistance are the inductor DC resistance, the internal resistance of the battery and the resistance in the connections from the inductor to the battery, from the inductor to the LX pin. In order to function properly under full load at V DD = 2V, the total of the inductor and the interconnect resistances should not exceed 0.3. The internal battery resistance should be no more than 0.5. A low ESR capacitance of 10 µf or more should be connected in parallel with the battery to average current over the boost converter cycle. 2: In the above table, wherever a specific V O value is listed under test conditions, the V O is forced externally with the inductor disconnected, and the boost converter is not running. 3: The limits shown are 100% tested at +25 C only. Test limits are guard-banded, based on temperature characterization to ensure compliance at temperature extremes. 4: This is the maximum input current that will not cause a logic high or logic low to be asserted. 2012-2013 Microchip Technology Inc. DS20002301B-page 3

DC ELECTRICAL CHARACTERISTICS RE46C317 (CONTINUED) Unless otherwise indicated, all parameters apply at T A = -10 C to +60 C, V DD =3V, V SS =0V, C 3 =10µF. Typical values are at T A =+25 C Parameter Symbol Test Pin Min. Typ. Max. Units Conditions Input Voltage Low V ILH 8 0.4 V HRNEN input V ILF 1 3 V FEED input; V O =10V Input Leakage I IHF 1 20 50 µa FEED = 22V; V O = 10V I ILF 1-50 -15 µa FEED = -10V; V O = 10V I IHH 8 20 50 µa HRNEN = V DD I ILH 8-50 -20 µa HRNEN = V SS Output Leakage I OZH 3 1 µa HRNEN = Float; V O = 12.5V; V LX =10V V O Output Voltage V VO 5 9 10 11 V V DD =3V, HRNEN = Low or High, I OUT =10mA V O Efficiency V OEFF 5 80 % I LOAD =10mA, V DD = 3V, HRNEN = 0V Output Low Voltage V OL 6, 7 0.3 0.5 V HORNB or HORNS I OUT =-16mA, V DD =3V Output High Voltage V OH 6, 7 9.5 9.7 V HORNB or HORNS V O =10V V DD = HRNEN = 3V I OUT =16mA Note 1: The boost converter in Boost mode (normal V O = 10V) can draw current pulses of ~0.8A and therefore is very sensitive to series resistance. The critical components of this resistance are the inductor DC resistance, the internal resistance of the battery and the resistance in the connections from the inductor to the battery, from the inductor to the LX pin. In order to function properly under full load at V DD = 2V, the total of the inductor and the interconnect resistances should not exceed 0.3. The internal battery resistance should be no more than 0.5. A low ESR capacitance of 10 µf or more should be connected in parallel with the battery to average current over the boost converter cycle. 2: In the above table, wherever a specific V O value is listed under test conditions, the V O is forced externally with the inductor disconnected, and the boost converter is not running. 3: The limits shown are 100% tested at +25 C only. Test limits are guard-banded, based on temperature characterization to ensure compliance at temperature extremes. 4: This is the maximum input current that will not cause a logic high or logic low to be asserted. DS20002301B-page 4 2012-2013 Microchip Technology Inc.

DC ELECTRICAL CHARACTERISTICS - RE46C318 Unless otherwise indicated, all parameters apply at T A = -10 C to +60 C, V DD =3V, V SS =0V, C 3 =10µF. Typical values are at T A =+25 C. Parameter Symbol Test Pin Min. Typ. Max. Units Conditions Supply Voltage V DD 2 2 5 V Operating Standby Supply Current I DD1 2 0.1 µa HRNEN = Low; No loads Input Voltage High V IHH 8 2.3 V HRNEN input V IHF 1 7 V FEED input; V O =10V Input Voltage Low V ILH 8 1 V HRNEN input V ILF 1 3 V FEED input; V O =10V Input Leakage I IHF 1 20 50 µa FEED = 22V; V O =10V I ILF 1-50 -15 µa FEED = -10V; V O =10V I IN 8-100 100 na HRNEN = V DD or V SS Output Leakage I OZH 3 1 µa HRNEN = V SS, V O =12.5V, V LX =10V V O Output Voltage V VO 5 9 10 11 V V DD =3V, HRNEN = High, I OUT =10mA V O Efficiency V VOEFF 5 80 % I LOAD =10mA, V DD =3V, HRNEN = 0V Output Low Voltage V OL 6, 7 0.3 0.5 V HORNB or HORNS; I OUT =-16mA; V DD =3V Output High Voltage V OH 6, 7 9.5 9.7 V HORNB or HORNS; V O =10V; V DD = HRNEN = 3V; I OUT =16mA AC ELECTRICAL CHARACTERISTICS Unless otherwise indicated, all parameters apply at T A = -10 C to +60 C, V DD =3V, V SS =0V, C 3 =10µF. Typical values are at T A =+25 C. Parameter Symbol Test Pin Min. Typ. Max. Units Conditions Horn Delay T HRN 8/6 or 8/7 1 ms HRNEN = High; Boost Running; 16 ma Load Note 1: Horn Delay is the delay between a high signal on HRNEN and the horn output turning ON. The internal circuitry delays the horn output until the Boost voltage reaches its set point, 10V nominally. TEMPERATURE CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V DD =3V, V SS =0V Parameter Symbol Min. Typ. Max. Units Conditions Temperature Ranges Operating Temperature Range T A -10 60 C Storage Temperature Range T STG -55 125 C Thermal Package Resistances Thermal Resistance, 8L-PDIP JA 89.3 C/W Thermal Resistance, 8L-SOIC JA 149.5 C/W 2012-2013 Microchip Technology Inc. DS20002301B-page 5

NOTES: DS20002301B-page 6 2012-2013 Microchip Technology Inc.

2.0 PIN DESCRIPTION The descriptions of the pins are listed in Table 2-1. TABLE 2-1: PIN FUNCTION TABLE RE46C317/18 Symbol PDIP, SOIC 1 FEED Horn Feedback 2 V DD Positive supply voltage 3 LX External inductor 4 V SS Negative supply voltage 5 V O Output of Boost converter 6 HORNB Horn Brass 7 HORNS Horn Silver 8 HRNEN Horn Enable Description 2.1 Horn Feedback Pin (FEED) This pin is usually connected to the feedback electrode of the piezoelectric horn through a current limiting resistor. If not used, this pin must be connected to V SS. 2.2 Positive Supply Pin (V DD ) This pin is connected to the positive supply voltage of the system. 2.3 External Inductor Pin (LX) This is the open drain NMOS output used to drive the boost converter inductor. The inductor should be connected from this pin to the positive supply voltage through a low resistance path. 2.4 Negative Supply Pin (V SS ) This pin is connected to the negative supply voltage of the system. 2.5 Boost Converter Output Pin (V O ) This is the output pin of the boost converter, typically 10V. 2.6 Horn Brass Pin (HORNB) This pin is connected to the metal electrode (B) of the piezoelectric transducer. 2.7 Horn Silver Pin (HORNS) This is the complementary output to HORNB. It connects to the ceramic electrode (S) of the piezoelectric transducer. 2.8 Horn Enable Pin (HRNEN) This is the logic input for horn enable. Tables 2-2 and 2-3 show the different HRNEN states and their description. TABLE 2-2: State Tri-state Low High TABLE 2-3: Low High State RE46C317 HORN ENABLE Description Standby mode; Boost converter is Disabled, Horn is Disabled Boost converter is Enabled, Horn is Disabled Boost converter is Enabled, Horn is Enabled RE46C318 HORN ENABLE Description Standby mode; Boost converter is Disabled, Horn is Disabled Boost converter is Enabled, Horn is Enabled 2012-2013 Microchip Technology Inc. DS20002301B-page 7

NOTES: DS20002301B-page 8 2012-2013 Microchip Technology Inc.

3.0 DEVICE DESCRIPTION RE46C317 and RE46C318 have three main blocks: Horn driver Boost regulator Horn Enable logic The following sections describe these blocks. 3.1 Horn Driver The horn driver is a push-pull circuit, capable of driving a three-terminal piezoelectric horn. It can also drive a modified two-terminal Piezo horn. 3.2 Horn Enable In RE46C317, the HRNEN is a tri-state signal with three valid states: low, high and tri-state (or midsupply). The three levels of HRNEN determine the modes of operation. When HRNEN is in tri-state, the device is in Standby mode and all circuits are disabled. This is the lowest current operating mode. When HRNEN is low, the device is in Boost-Only mode. In this mode, only the boost regulator is enabled and the output voltage is boosted to 10V nominally. The horn driver circuit is disabled in this mode. This mode can be used to check for a low battery condition. When HRNEN is high, the part is in Normal Operation. The boost regulator and the horn driver circuits are enabled in this mode. The RE46C318 uses a binary logic circuit, rather than tri-state logic, to determine the mode of operation. When HRNEN is low, the boost and horn driver circuits are disabled and the device is in Standby. This is the lowest current operating mode. When HRNEN is high, the boost and horn driver circuits are enabled. 3.3 Boost Regulator The boost regulator in the RE46C317/18 is a current-mode controller with two control loops, that work together in maintaining a constant output voltage and supply the required load current. The inner current control loop provides cycle-by-cycle current limiting, while the outer control loop provides output voltage control. When the boost converter is turned on using the HRNEN input, the NMOS switch turns on and the inductor current ramps up to its peak value, approximately 0.6A nominally. The current comparator turns off the NMOS switch for a fixed period of time to allow energy to be transferred to the output capacitor. When the voltage on the output capacitor equals or exceeds the desired output voltage, 10V nominally, the current loop is disabled until the load discharges the output capacitor to a voltage lower than the desired output voltage. Every time the output voltage falls below the desired value, the switching cycle starts and continues until the desired value is reached. The constant switching resulting in the charging and discharging of the output capacitor causes a ripple on the output voltage. The ripple on the output voltage depends on the external component parameters, such as the value of external capacitor, its ESR, etc. In both RE46C317 and RE46C318, when logic high is asserted on the HRNEN pin, the boost regulator is enabled. However, the horn output is not enabled until the output voltage reaches its nominal set point, 10V nominally. This ensures that the output voltage rises quickly to the necessary drive voltage for the Piezo horn. The boost regulator has been optimized to work with the external components as shown in the Typical Application circuit. 2012-2013 Microchip Technology Inc. DS20002301B-page 9

Figure 3-1 shows the horn turn-on delay after the HRNEN has been asserted high. After the boost voltage reaches its nominal set point, the HORNB output turns on. In this case, the HORNB output is driving a load current of 20 ma DC. FIGURE 3-1: Delay. RE46C317 Horn Turn-On Figure 3-2 shows the typical switching waveforms of the boost regulator. The top waveform shows the boost output, the center waveform shows the LX switching waveform, and the lower waveform shows the inductor current. FIGURE 3-2: Waveforms. RE46C317/18 Switching DS20002301B-page 10 2012-2013 Microchip Technology Inc.

4.0 PACKAGING INFORMATION 4.1 Package Marking Information 8-Lead PDIP (300 mil) Example XXXXXXXX XXXXXNNN YYWW RE46C318 V/P e3 ^^256 1315 8-Lead SOIC (3.90 mm) Example NNN RE46C317 SN e3 ^^1315 256 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week 01 ) NNN e3 Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( e3) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 2012-2013 Microchip Technology Inc. DS20002301B-page 11

N NOTE 1 E1 1 2 3 D E A A2 A1 L c b1 b e eb DS20002301B-page 12 2012-2013 Microchip Technology Inc.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2012-2013 Microchip Technology Inc. DS20002301B-page 13

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS20002301B-page 14 2012-2013 Microchip Technology Inc.

2012-2013 Microchip Technology Inc. DS20002301B-page 15

NOTES: DS20002301B-page 16 2012-2013 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY Revision B (May 2013) The following has been modified: 1. Added Maximum Human Body Model ESD value to Section 1.1, Absolute Maximum Ratings. Revision A (June 2012) Original Release of this Document. 2012-2013 Microchip Technology Inc. DS20002301B-page 17

NOTES: DS20002301B-page 18 2012-2013 Microchip Technology Inc.

PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X X X Device Package Number Lead Free/ of Pins Tape and Reel Device: RE46C317 CMOS Piezo Horn Driver IC RE46C318 CMOS Piezo Horn Driver IC Package: E = Plastic Dual In-Line (300 mil Body), 8-Lead (PDIP) S = Small Plastic Outline - Narrow, 3.90 mm Body, 8-Lead (SOIC) Examples: a) RE46C317E8F: 8LD PDIP package, Lead Free b) RE46C317S8F: 8LD SOIC package, Lead Free c) RE46C317S8TF: 8LD SOIC package, Tape and Reel a) RE46C318E8F: 8LD PDIP package, Lead Free b) RE46C318S8F: 8LD SOIC package, Lead Free c) RE46C318S8TF: 8LD SOIC package, Tape and Reel 2012-2013 Microchip Technology Inc. DS20002301B-page 19

NOTES: DS20002301B-page 20 2012-2013 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as unbreakable. Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == Trademarks The Microchip name and logo, the Microchip logo, dspic, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC 32 logo, rfpic, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipkit, chipkit logo, CodeGuard, dspicdem, dspicdem.net, dspicworks, dsspeak, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mtouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rflab, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. 2012-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62077-213-3 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company s quality system processes and procedures are for its PIC MCUs and dspic DSCs, KEELOQ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. 2012-2013 Microchip Technology Inc. DS20002301B-page 21

Worldwide Sales and Service AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880-3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 11/29/12 DS20002301B-page 22 2012-2013 Microchip Technology Inc.