Quantum photonic devices in single-crystal diamond

Similar documents
Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Silicon-based photonic crystal nanocavity light emitters

Cavity QED with quantum dots in semiconductor microcavities

The integration of solid state quantum emitters with

Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311)

Dipole induced transparency in waveguide coupled photonic crystal cavities

Guided resonance reflective phase shifters

Distribution Unlimited

InGaAsP photonic band gap crystal membrane microresonators*

Supporting Information: Strongly Cavity-Enhanced

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Integrated into Nanowire Waveguides

Optics Communications

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Grating-waveguide structures and their applications in high-power laser systems

Sub-micron diameter micropillar cavities with high Quality. factors and ultra-small mode volumes

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

SUPPLEMENTARY INFORMATION

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm.

Supplementary information for Stretchable photonic crystal cavity with

Waveguiding in PMMA photonic crystals

Motivation Design and Construction of Device

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

SUPPLEMENTARY INFORMATION

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Vertical External Cavity Surface Emitting Laser

Nanoscale Systems for Opto-Electronics

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Hybrid Group IV Nanophotonic Structures. Incorporating Diamond Silicon-Vacancy Color

Improved Output Performance of High-Power VCSELs

Surface-Emitting Single-Mode Quantum Cascade Lasers

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

Single-photon excitation of morphology dependent resonance

Spontaneous Hyper Emission: Title of Talk

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

Printing Beyond srgb Color Gamut by. Mimicking Silicon Nanostructures in Free-Space

Silicon photonic devices based on binary blazed gratings

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Microscopic Structures

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Supplementary Information:

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

SUPPLEMENTARY INFORMATION

The Beam Characteristics of High Power Diode Laser Stack

Chapter 6 Photoluminescence Measurements of Quantum-Dot-Containing Microdisks Using Optical Fiber Tapers

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Instructions for the Experiment

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

Supporting Information: Plasmonic and Silicon Photonic Waveguides

Silicon nitride based TriPleX Photonic Integrated Circuits for sensing applications

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

Lab4 Hanbury Brown and Twiss Setup. Photon Antibunching

Supplementary Materials for

Nanowires for Quantum Optics

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Fabrication of Probes for High Resolution Optical Microscopy

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface- Emitting Lasers on Silicon

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith

Principles of Optics for Engineers

Single Photon Transistor. Brad Martin PH 464

SUPPLEMENTARY INFORMATION

Hybrid vertical-cavity laser integration on silicon

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

Supplementary Discussion 1: NV center level diagram

Optically reconfigurable balanced dipole antenna

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers

Design, Fabrication and Characterization of Very Small Aperture Lasers

SUPPLEMENTARY INFORMATION

Diffraction, Fourier Optics and Imaging

A Metalens with Near-Unity Numerical Aperture

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Waveguide-Integrated Optical Antenna nanoleds for On-Chip Communication

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Luminous Equivalent of Radiation

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Background. Chapter Introduction to bolometers

3-5μm F-P Tunable Filter Array based on MEMS technology

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Instruction manual and data sheet ipca h

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

Direct observation of beamed Raman scattering

Transcription:

PAPER OPEN ACCESS Quantum photonic devices in single-crystal diamond To cite this article: Andrei Faraon et al 13 New J. Phys. 15 51 View the article online for updates and enhancements. Related content - Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond C Santori, P E Barclay, K-M C Fu et al. - Diamond-based structures to collect and guide light S Castelletto, J P Harrison, L Marseglia et al. - Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities K-M C Fu, P E Barclay, C Santori et al. Recent citations - Kaiyuan Xu et al - Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform Michael Gould et al - Low-Loss Millimeter-Length Waveguides and Grating Couplers in Single-Crystal Diamond Fei Gao et al This content was downloaded from IP address 18.51.3.83 on 8//18 at 1:1

Quantum photonic devices in single-crystal diamond Andrei Faraon 1,,, Charles Santori, Zhihong Huang, Kai-Mei C Fu,3, Victor M Acosta, David Fattal and Raymond G Beausoleil 1 Applied Physics and Materials Science, California Institute of Technology, 1 East California Boulevard, Pasadena, CA 9115, USA Hewlett-Packard Laboratories, 151 Page Mill Road, Palo Alto, CA 93, USA 3 Department of Physics, University of Washington, Seattle, WA 98195, USA E-mail: faraon@caltech.edu New Journal of Physics 15 (13) 51 (9pp) Received 1 November 1 Published 7 February 13 Online at http://www.njp.org/ doi:1.188/1367-63/15//51 Abstract. Nitrogen vacancy centers in diamond have outstanding quantum optical properties that enable applications in information processing and sensing. As with most solid-state systems for quantum photonic applications, the great promise lies in the capability to embed them in an on-chip optical network. Here we present basic integrated devices composed of diamond micro-ring resonators coupled to waveguides that are terminated with grating out-couplers. Strong enhancement is observed for the zero-phonon line of nitrogen vacancy centers coupled to the ring resonance. The zero-phonon line is efficiently coupled from the ring into the waveguide and then scattered out of plane by the grating outcouplers. Author to whom any correspondence should be addressed. Content from this work may be used under the terms of the Creative Commons Attribution 3. licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 15 (13) 51 1367-63/13/51+9$33. IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Contents 1. Introduction. Device fabrication 3. Passive measurements of the cavity waveguide coupling 3. Low-temperature spectroscopy of nitrogen vacancy centers 3 5. Conclusion 8 Acknowledgment 8 References 8 1. Introduction During the last decade, diamond has become an intensely researched optical material for quantum photonic devices [1]. The main reason behind this development is that diamond can serve as a host material for a variety of color centers with desirable quantum optical properties. Of all these color centers, the negatively charged nitrogen vacancy (NV) center has attracted the most attention because of its long spin coherence time and an energy-level structure that allows for straightforward optical initialization and readout of the quantum states [, 3]. Current applications for NV centers in diamond include magnetic and electric field sensors with ultrahigh spatial resolution, and devices for quantum information [ 7]. For quantum information applications, a possible path toward scalability is to connect a set of NV centers using an onchip optical network [8]. We have previously demonstrated proof-of-concept devices where single NV centers are coupled to micro/nano resonators in single-crystal diamond [9, 1]. Here we take the next step toward the development of optical quantum networks and demonstrate that the zero-phonon emission from NV centers located in ring resonators is enhanced and then efficiently coupled to photonic ridge waveguides and scattered out of the plane of the chip. A similar approach has been shown in [11], but here we demonstrate operation at cryogenic temperatures and thus resonant enhancement of the zero-phonon line (ZPL) as required for quantum information applications.. Device fabrication The device used in this experiment consists of a diamond micro-ring (.5 µm in diameter and 5 nm wide) coupled to a ridge waveguide (3 nm wide). The spacing between the ring and the waveguide is 1 nm (figure 1). The grating output coupler consists of alternating diamond slabs (35 nm wide) separated by nm (we would like to specify that this design does not provide optimal coupling efficiency, and we give the details of a better design toward the end of this paper). The entire device was etched in a 3 nm thick diamond membrane that was obtained by thinning a 5 µm thick type IIa single-crystal diamond membrane (purchased already polished to 5 µm from Element 6) using reactive ion etching (RIE) in an oxygen plasma. During the etching process outlined in figure the membrane was mounted on a µm thick SiO substrate thermally grown on an Si wafer. After the membrane preparation, the device was patterned using electron-beam lithography and negative electron-beam resist (HSQ, Fox-1), which further acted as a mask to transfer the pattern into diamond using RIE with oxygen/argon New Journal of Physics 15 (13) 51 (http://www.njp.org/)

3 m Figure 1. View of the device consisting of a micro-ring resonator coupled to a ridge waveguide. The waveguide is terminated with two grating couplers used to couple light into and from the waveguide. (The images are not of the actual device used in the experiment because imaging with a scanning electron microscope can change the charge state of the NV center. A similar device was imaged instead.) plasma (see figure for details). Some residual resist remained on the top of the diamond after etching. 3. Passive measurements of the cavity waveguide coupling The optical properties of the device were first characterized via a transmission measurement, where a laser beam was coupled into one of the gratings and the intensity of the light scattered from the other grating was monitored as shown schematically in figure 3(a). The input coupling and the collection were done using the same confocal microscope setup. The output light was separated from the direct reflection of the laser by re-imaging the chip with a lens and using a movable aperture located in the image plane to select only the area of interest (i.e. the grating) from the chip. The output was sent to a photodetector, which in this case was the CCD of a spectrometer that was later used to measure the signal from NV centers coupled to the resonator. The results of this measurement are shown in figure 3(b) where a continuous wave laser diode (NewFocus Velocity) was scanned across a ring resonance that was later coupled to the spectral line of an NV center. A fit to the data indicates a coupled quality factor of Q coupled = 55 and a contrast of 9%. A similar ring uncoupled to the waveguide had a quality factor of Q uncoupled = 1, which indicates that the device operates close to the criticalcoupling regime (Q coupled = Q uncoupled /) where 1% contrast is expected.. Low-temperature spectroscopy of nitrogen vacancy centers To estimate the coupling of the NV ZPL emission to the mode of the ring resonator and then into the waveguide, the sample was cooled in a continuous-flow liquid helium cryostat, at temperatures below 1 K. The same confocal setup used for the transmission measurement was New Journal of Physics 15 (13) 51 (http://www.njp.org/)

Diamond(5 m) SiO ( m) Dry etch diamond ~3nm Spin resist for electron beam litography (Fox-1) FOX-1 Si substrate Pattern ring in FOX using electron-beam litography Dry etch to transfer pattern from FOX to diamond Figure. Schematic representation (not to scale) showing the sequence of fabrication steps. A 5 µm-thick diamond membrane was placed on a µm-thick thermal SiO layer grown on a silicon wafer. No special mounting procedure was used to attach the membrane to the substrate. The fabrication steps were as follows. (i) Dry etching (oxygen plasma in an Oxford RIE etching machine) was used to thin the membrane until it was 3 nm thick. (ii) Electron-beam resist (Fox 1) was spun on the chip and electron-beam lithography was used to pattern the ring in the resist. (iii) The pattern was transferred from resist to the diamond using dry etching in oxygen plasma. (a) Out In (b) Intensity[a.u.] 3.5 3.5 1.5 1.5 637 637.5 638 638.5 639 wavelength [nm] Figure 3. (a) Schematic representation showing the principle of the transmission measurement, where a laser is injected in one of the gratings and the intensity of the light scattered from the other port is monitored as a function of wavelength. (b) Transmission scan through a ring resonance. The fit indicates a coupled quality factor Q coupled = 55 and a contrast close to 9%. utilized. A green laser (53 nm) was used to excite photoluminescence (PL) in NV centers as shown in figure (a), and an NV center with resonance frequency close (red-shifted) to the ring resonance frequency was identified. A gas condensation technique was then used to tune the ring New Journal of Physics 15 (13) 51 (http://www.njp.org/)

5 Figure. (a) Schematic representation showing the principle of the PL measurement. An NV center located in the diamond ring and optically coupled to it is excited with green (53 nm) laser light (6 mw). The NV center emits red light ( 637 nm) that first circulates in the ring; then it is coupled to the waveguide and scattered outward by the gratings. (b) A movable aperture is used to collect light that is scattered only from specific areas of the device, as indicated by the dashed-line circle. resonance until it overlapped with the NV spectral line as described in our previous work [9]. As in [9], the NV center exhibits strong spontaneous emission rate enhancement that is observed as a large increase in the scattered PL in the ZPL. To quantify how much of the ZPL luminescence is actually coupled into the waveguide, we used a movable aperture in the re-imaged plane of the device (the same configuration as for the transmission measurement) to collect light from different areas of the device and send it to a spectrometer. The relative size of the aperture compared to the device and the locations of interest are shown in figure (b). The spectra taken when the NV was resonant with the cavity are shown in figure 5, both when an aperture was used to collect only light scattered by the right grating and also when no aperture was used. This indicates that most of the PL collected in the microscope objective comes through the right grating (the left grating for this device was not scattering the light efficiently due to errors in the fabrication process). In figure 5, we also show a comparison between the spectrum taken with the aperture on the right grating when the NV was on resonance, and when the cavity was detuned from the NV. This indicates that having the cavity resonant with the NV is essential for obtaining high count rates into the waveguide. The two effects responsible for increasing the count rate are the higher coupling efficiency into the waveguide, and the spontaneous emission rate enhancement (Purcell effect). For a ring that is critically coupled to the waveguide, the waveguide coupling efficiency is 5%. The spontaneous emission rate enhancement of a particular dipole transition i of an emitter coupled to a micro-resonator relative to the rate of that dipole in an infinite uniform medium of the same material as the resonator is enhanced [1] by the factor ( τ τ leak ) i + F i. The rate 1/τ is the emission rate in the uniform dielectric medium, 1/τ leak is the emission rate outside the cavity mode and F i = F cav ( E( r i ) µ i E max µ i ) 1 1 + Q ( λ i λ cav 1), (1) New Journal of Physics 15 (13) 51 (http://www.njp.org/)

6 5 35 NV on resonance, collect right grating NV on resonance, collect everything NV off resonance, collect right grating 3 Counts/sec 5 15 1 5 637 637.5 638 638.5 639 [nm] Figure 5. Comparison between the PL collected with the aperture over the right grating when the NV is resonant with the cavity (blue dot), PL collected without an aperture from the entire device (green dash) and PL collected with the aperture from the right grating when the cavity is off-resonant with the NV (black line). 35 3 NV on resonance, collect right grating NVs in bulk membrane Counts/sec 5 15 1 5 Un-coupled NVs 636 636.5 637 637.5 638 638.5 639 [nm] Figure 6. Comparison between the PL collected from the right grating when the NV and the cavity are resonant (blue) and the PL collected from NVs located in an un-patterned region of the membrane (yellow). where µ i is the dipole moment, E( r i ) is the local electric field at the emitter location r i, λ cav is the cavity wavelength, λ i is the emitter wavelength and E max is the maximum value of the electric field in the resonator. For the case where the dipole is resonant with the cavity and also ideally positioned and oriented with respect to the local electric field, F i = F cav, where F cav = 3 π ( λcav n ) 3 Q V mode () and V mode = ( V ɛ( r) E( r) d 3 r)/max(ɛ( r) E( r) ) is the optical mode volume of the resonator, with ɛ( r) the electric permittivity at position r. The mode volume of the resonance coupled to New Journal of Physics 15 (13) 51 (http://www.njp.org/)

7 (a) (b) y ( m) z ( m) n=. n=1 n=1.5 6 8 1 1 6 8 1 1 x ( m) x ( m) (c) (d) y ( m) z ( m) 6 8 1 1 (a.u.) (a.u.).1..3..5.6.7.8 6 8 1 1.5 1 1.5.5 3 3.5 Figure 7. (a) Top view of the grating structure connected to the waveguide via a tapered waveguide. The black region corresponds to a high refractive index (diamond). The units on the axes are microns. (b) Cross section through the grating along the waveguide. The diamond grating (n =.) sits on top of a silicon dioxide layer (n = 1.5), while the top material is air. (c) Electric field density in a plane located.5 µm above the grating. (d) Electric field density (ε) in a plane perpendicular to the plane of the grating and going through the waveguide. the NV center is V mode 15 ( λ n ) 3 and the quality factor is Qcoupled 55, which corresponds to a maximum spontaneous emission rate enhancement F max 9. Our measurements indicate a spontaneous emission rate enhancement F 1, as determined from lifetime measurements similar to those presented in our previous work where a similar spontaneous emission rate enhancement was estimated [9]. With a waveguide coupling efficiency of 5% and a spontaneous emission rate enhancement of F 1, it is expected that 6 times more ZPL photons are coupled into the waveguide than all the photons emitted by a single NV in bulk material. In figure 6, the ZPL collected from the right grating is compared to the ZPL collected from NVs located in a region of bulk (i.e. un-patterned) membrane. Integrating over the entire spectral width of the NV for both the coupled and un-coupled cases, we determine that in the coupled case we collect 5 times more photons scattered from only one of the gratings than what we can collect from bulk NV centers using a microscope objective with NA =.6 and free-space optics. New Journal of Physics 15 (13) 51 (http://www.njp.org/)

8 To improve the out-coupling efficiency from the waveguide through the grating and into the free space optics, it is essential to improve the design for the grating out couplers. Here we present a design (see figure 7) for a grating that scatters out of plane the transverse magnetic (TM) mode in the waveguide, and % of the scattered light can be collected by a microscope objective with numerical aperture NA =.6. The design consists of a grating where the grooves have different widths as shown in figures 7(a) and (b). As light travels through the grating it gets scattered and thus diminishes in intensity. The light first interacts with grooves of smaller width and then the width is increased such that the amount of scattered light at each groove has similar intensity and constructively interferes in the out of plane direction. The entire structure is designed in a 3 nm thick diamond membrane situated on top of a silicon dioxide layer. The grooves of the grating are situated at locations [,.78,.5761,.893, 1.9, 1.587] µm (the location of the origin is arbitrary) and have widths [.63,.783,.958,.118,.1353,.157] µm. The tapered region is 7 µm long and the waveguide width is µm at the location of the grating. The profile of the electric field density when the waveguide is excited with a TM source is shown in figures 7(c) and (d) (the simulation is performed using a finite difference time domain simulation). It can be observed that the light is scattered primarily in the out of plane directions in a narrow solid angle. The amount of energy scattered into NA =.6 was determined by analyzing in k-space the field profile on top of the structure. 5. Conclusion In conclusion, we have demonstrated efficient coupling of the ZPL PL of NV centers in diamond into on-chip photonic waveguides and used grating couplers to scatter a portion of this light into free space optics. This represents an initial step toward the implementation of on-chip photonic networks in diamond. Future work will focus on developing devices based on multiple NV centers including on-chip interference of the ZPL from at least two NVs that is a prerequisite for implementing on chip entanglement of multiple NV centers. Entanglement between multiple NVs on the same chip could eventually enable large-scale devices such as quantum simulators, with applications in quantum chemistry [13], quantum communications and factoring [1]. Acknowledgment This material is based upon work supported by the Defense Advanced Research Projects Agency under award no. HR11-9-1-6 and The Regents of the University of California. References [1] Aharonovich I, Greentree A D and Prawer S 11 Diamond photonics Nature Photon. 5 397 5 [] Balasubramanian G et al 9 Ultralong spin coherence time in isotopically engineered diamond Nature Mater. 8 383 7 [3] Togan E et al 1 Quantum entanglement between an optical photon and a solid-state spin qubit Nature 66 73 [] Degen C L 8 Scanning magnetic field microscope with a diamond single-spin sensor Appl. Phys. Lett. 9 3111 [5] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 8 High-sensitivity diamond magnetometer with nanoscale resolution Nature Phys. 81 6 New Journal of Physics 15 (13) 51 (http://www.njp.org/)

9 [6] Dolde F et al 11 Electric-field sensing using single diamond spins Nature Phys. 7 59 63 [7] Childress L, Taylor J M, Sorensen A S and Lukin M D 5 Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters Phys. Rev. A 7 533 [8] O Brien J L, Furusawa A and Vuckovic J 9 Photonic quantum technologies Nature Photon. 3 687 95 [9] Faraon A, Barclay P E, Santori C, Fu K-M C and Beausoleil R G 11 Resonant enhancement of the zerophonon emission from a colour centre in a diamond cavity Nature Photon. 5 31 5 [1] Faraon A, Santori C, Huang Z, Acosta V M and Beausoleil R G 1 Coupling of nitrogen vacancy centers to photonic crystal cavities in monocrystalline diamond Phys. Rev. Lett. 19 336 [11] Hausmann B J M et al 1 Integrated diamond networks for quantum nanophotonics Nano Lett. 1 1578 8 [1] Purcell E M 196 Spontaneous emission probabilities at radio frequencies Phys. Rev. 69 681 [13] Lanyon B P et al 1 Towards quantum chemistry on a quantum computer Nature Chem. 16 11 [1] Nielsen M A and Chuang I L Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) New Journal of Physics 15 (13) 51 (http://www.njp.org/)