12th Bay Area Mathematical Olympiad

Similar documents
Solutions to the 2004 CMO written March 31, 2004

MATHEMATICS ON THE CHESSBOARD

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

Project Maths Geometry Notes

The First TST for the JBMO Satu Mare, April 6, 2018

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true?

6-1. Angles of Polygons. Lesson 6-1. What You ll Learn. Active Vocabulary

3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm.

UK Junior Mathematical Challenge

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

UK JUNIOR MATHEMATICAL CHALLENGE. April 25th 2013 EXTENDED SOLUTIONS

Caltech Harvey Mudd Mathematics Competition February 20, 2010

3. Given the similarity transformation shown below; identify the composition:

14th Bay Area Mathematical Olympiad. BAMO Exam. February 28, Problems with Solutions

Secondary 2 Unit 7 Test Study Guide

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money.

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

Solutions of problems for grade R5

0810ge. Geometry Regents Exam y # (x $ 3) 2 % 4 y # 2x $ 5 1) (0,%4) 2) (%4,0) 3) (%4,%3) and (0,5) 4) (%3,%4) and (5,0)

TOURNAMENT ROUND. Round 1

Meet #3 January Intermediate Mathematics League of Eastern Massachusetts

th Grade Test. A. 128 m B. 16π m C. 128π m

GEOMETRY. Workbook Common Core Standards Edition. Published by TOPICAL REVIEW BOOK COMPANY. P. O. Box 328 Onsted, MI

Problem Solving Methods

Twenty-sixth Annual UNC Math Contest First Round Fall, 2017

To Explore the Properties of Parallelogram

Winter Quarter Competition

Geometry Topic 4 Quadrilaterals and Coordinate Proof

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST

Counting Things. Tom Davis March 17, 2006

Geometry - Chapter 6 Review

Unit 6: Quadrilaterals

2. Nine points are distributed around a circle in such a way that when all ( )

METHOD 1: METHOD 2: 4D METHOD 1: METHOD 2:

UAB MATH TALENT SEARCH

Elizabeth City State University Elizabeth City, North Carolina27909 STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET

Downloaded from

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

MATH CIRCLE, 10/13/2018

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

International mathematical olympiad Formula of Unity / The Third Millenium 2013/2014 year

Geometry Unit 5 Practice Test

Semester 1 Final Exam Review

HANOI STAR - APMOPS 2016 Training - PreTest1 First Round

MATHEMATICS LEVEL 7 8 (Α - Β Γυμνασίου)

Coding Theory on the Generalized Towers of Hanoi

State Math Contest Junior Exam SOLUTIONS

1999 Mathcounts National Sprint Round Solutions

2. Here are some triangles. (a) Write down the letter of the triangle that is. right-angled, ... (ii) isosceles. ... (2)

Directorate of Education

Daniel Plotnick. November 5 th, 2017 Mock (Practice) AMC 8 Welcome!

HEXAGON. Singapore-Asia Pacific Mathematical Olympiad for Primary Schools (Mock Test for APMOPS 2012) Pham Van Thuan

IMOK Maclaurin Paper 2014

(1). We have n different elements, and we would like to arrange r of these elements with no repetition, where 1 r n.

Indicate whether the statement is true or false.

Well, there are 6 possible pairs: AB, AC, AD, BC, BD, and CD. This is the binomial coefficient s job. The answer we want is abbreviated ( 4

Organization Team Team ID# If each of the congruent figures has area 1, what is the area of the square?

4. The terms of a sequence of positive integers satisfy an+3 = an+2(an+1 + an), for n = 1, 2, 3,... If a6 = 8820, what is a7?

PRE-JUNIOR CERTIFICATE EXAMINATION, 2010 MATHEMATICS HIGHER LEVEL. PAPER 2 (300 marks) TIME : 2½ HOURS

N-Queens Problem. Latin Squares Duncan Prince, Tamara Gomez February

Asymptotic Results for the Queen Packing Problem

HIGH SCHOOL - PROBLEMS

Applications of Fermat s Little Theorem and Congruences

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board

1.6 Congruence Modulo m

(Geometry) Academic Standard: TLW use appropriate tools to perform basic geometric constructions.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

Norman Do. Bags and eggs If you have 20 bags, what is the minimum number of eggs required so that you can have a different number of eggs in each bag?

Geometry Midterm Review Spring 2011 Name Date Period. 2. Name three points that are collinear Name a pair of opposite rays. 3.

b. Draw a line and a circle that intersect at exactly one point. When this happens, the line is called a tangent.

SOLUTIONS TO PROBLEM SET 5. Section 9.1

Chapter 5. Drawing a cube. 5.1 One and two-point perspective. Math 4520, Spring 2015

CIE 2016 Math Comp Math Fun Answer Key. Name: ID: Grade: 7 Room: Start Time: Finish Time:

Madinaty Language School Math Department 4 th primary Revision sheet 4 th primary Complete : 1) 5 million, 34 thousand,and 18 =.. 2) is the smallest

UNDERSTAND SIMILARITY IN TERMS OF SIMILARITY TRANSFORMATIONS

March 5, What is the area (in square units) of the region in the first quadrant defined by 18 x + y 20?

Exploring Maths Workbook 3B (2 nd Edition) Answers Last update 2/1/2006. (b) (i) common h (ii) AED. Exercise 8A (P. 1) 1.

7. Three friends each order a large

Twenty-fourth Annual UNC Math Contest Final Round Solutions Jan 2016 [(3!)!] 4

2. A number x is 2 more than the product of its reciprocal and its additive inverse. In which interval does the number lie?

ELMS CRCT ACADEMY 7TH GRADE MATH ( MATH)

Permutation Groups. Definition and Notation

2014 Edmonton Junior High Math Contest ANSWER KEY

UKMT UKMT. Team Maths Challenge 2015 Regional Final. Group Round UKMT. Instructions

UNIT 14 Loci and NC: Shape, Space and Measures Transformations 3b, 3c, 3d and 3e

SAMPLE !!CAUTION!! THIS IS ONLY A SAMPLE PAPER !!CAUTION!! THIS PAPER IS MEANT ONLY FOR PRACTICE

# 1. As shown, the figure has been divided into three identical parts: red, blue, and green. The figures are identical because the blue and red

Square & Square Roots

Staircase Rook Polynomials and Cayley s Game of Mousetrap

(A) Circle (B) Polygon (C) Line segment (D) None of them (A) (B) (C) (D) (A) Understanding Quadrilaterals <1M>

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together?

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap

Georgia Tech HSMC 2010

(A) Circle (B) Polygon (C) Line segment (D) None of them

6-5 P R OV I N G R H O M B U S E S, R E C TA N G L E S, A N D S Q UA R E S

Discrete Mathematics. Spring 2017

UNIT 6: CONJECTURE AND JUSTIFICATION WEEK 24: Student Packet

(1) 2 x 6. (2) 5 x 8. (3) 9 x 12. (4) 11 x 14. (5) 13 x 18. Soln: Initial quantity of rice is x. After 1st customer, rice available In the Same way

UKMT UKMT UKMT. Junior Kangaroo Mathematical Challenge. Tuesday 13th June 2017

Transcription:

2th Bay Area Mathematical Olympiad February 2, 200 Problems (with Solutions) We write {a,b,c} for the set of three different positive integers a, b, and c. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of {a,b,c}. We can then calculate the sum of the elements of each subset. For example, for the set {4,7,42} we will find sums of 4, 7, 42,, 46, 49, and 5 for its seven subsets. Since 7,, and 5 are prime, the set {4,7,42} has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, and themselves. In particular, the number is not prime.) What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set {a,b,c} that has that number of subsets with prime sums, and explain why no other three-element set could have more. Solution: The answer is five. For example, the set {2,,5} has 2,, 5, 5, 7, 8, and 0 as its sums, and the first five of those are prime. If you re worried about 5 appearing twice in that list, then try {2,,} which has 2,,, 5,, 4, and 6 as its subsets sums, so now we see five different primes. No set can have more than five prime subset sums because for any set {a,b,c}: If the set contains three even numbers, then clearly it can have only one prime subset sum, namely 2 if it is in the set. If the set contains two even numbers a and b then a, b, and ab are all even. Since they are distinct positive integers, only one of a and b can be equal to 2, and a b > 2, so we have at least two non-prime sums and thus at most five prime subset sums. If the set contains one even number a then a, b c, and a b c are all even. Again, only a can be equal to 2 and thus prime, so we have at least two non-prime sums as in the previous case. If the set contains zero even numbers (and thus three odd numbers) then a b, a c, and b c are all even, and since the numbers are distinct positive integers then none of these three sums can equal 2, so none of those are prime. Thus the set has at most four prime subset sums. In any case, the maximum number of prime subset sums is five. There are various ways to shorten the above argument. For example, once you have found a set with five prime subset sums, you can check whether 6 is possible by looking at two cases: either two or three of the elements of the set have to be prime.

BAMO 200 Problems and Solutions March 7, 200 2 2 A clue k digits, sum is n gives a number k and the sum of k distinct, nonzero digits. An answer for that clue consists of k digits with sum n. For example, the clue Three digits, sum is 2 has only one answer: 6,8,9. The clue Three digits, sum is 8 has two answers:,,4 and,2,5. If the clue Four digits, sum is n has the largest number of answers for any four-digit clue, then what is the value of n? How many answers does this clue have? Explain why no other four-digit clue can have more answers. Solution: The sum of 20 has 2 answers, and this is the largest number of answers for any four-digit clue. We could simply list all the possible sets of four digits and then count. There are 26 such sets. Alternatively, define A(s,n,k) to be the number of options with sum s using exactly n digits whose largest digit is less than or equal to k. Then the question is to find the maximum of A(s,4,9) for all values of s. By symmetry, since we can replace each digit d with 0 d, we know that A(s,4,9) = A(40 s,4,9), so we only need to investigate values of s from the minimum, 24 = 0, through 20. (This also implies we only need to list the 69 sets of four digits whose sum is less than or equal to 20 in order to prove that 20 has the most answers. In fact, we can use even fewer than that, since by adding to the largest digit we can see that A(s,n,9) A(s,n,9) as long as there are no ways of writing s using the digit 9; for sums of four digits this shows we only need to investigate sums of 5 through 20.) To compute A(s,n,k) in general, we note that any sum must either use a digit equal to k or not. If there is a digit equal to k, then there are A(s k,n,k ) ways to finish the sum. If there is no digit k, then there are A(s,n,k ) ways to finish the sum. Thus, A(s,n,k) = A(s k,n,k ) A(s,n,k ). We also know that A(s,n,k) is 0 in a lot of cases, including any where k < n, and A(s,,k) is equal to when 0 < s < k and 0 otherwise, because we must have one digit that equals s. Thus, we can fill in the following tables, beginning with n = 2, and then n =, and then finally n = 4. n = 2 s = 4 5 6 7 8 9 0 2 4 5 6 7 k = 2 k = k = 4 2 k = 5 2 2 2 k = 6 2 2 2 2 k = 7 2 2 2 2 k = 8 2 2 4 2 2 k = 9 2 2 4 4 4 2 2 n = s = 6 7 8 9 0 2 4 5 6 7 8 9 20 2 22 2 24 k = k = 4 k = 5 2 2 2 k = 6 2 2 k = 7 2 4 4 5 4 4 2 k = 8 2 4 5 6 6 6 6 5 4 2 k = 9 2 4 5 7 7 8 8 8 7 7 5 4 2 n = 4 s = 0 2 4 5 6 7 8 9 20 k = 4 k = 5 k = 6 2 2 2 2 k = 7 2 4 4 5 4 4 2 k = 8 2 5 5 7 7 8 7 7 k = 9 2 5 6 8 9 2 We see that 20 has 2 answers, while 9 and 8 have only answers (and similarly 2 and 22 also have answers), and the remaining numbers have even fewer answers.

BAMO 200 Problems and Solutions March 7, 200 Suppose a,b,c are real numbers such that a b 0, b c 0, and c a 0. Prove that a b c a b c (Note: x is called the absolute value of x and is defined as follows. If x 0 then x = x; and if x < 0 then x = x. For example, 6 = 6, 0 = 0 and 6 = 6.) Solution: The inequality b c 0 gives a b c a. On the other hand, adding up the other two given inequalities yields (ab)(ca) 0, resulting in abc a. Since a = a or a, we have in any case that Similarly a b c a. a b c b a b c c Now adding these three inequalities and dividing by yields the desired inequality. Alt Solution : The previous solution used the symmetry of a, b, and c. We can also use that symmetry to assume without loss of generality that a b c. If b and c are both negative, then so is b c, which contradicts the given information. So there can be at most one negative value among the three, which with our ordering must be c. In the case where a, b, and c are all positive or 0, then the positive (or zero) number x = a b c is greater than or equal to x/. Otherwise, since we have assumed that c is the least of the three, c is negative while a and b are not. Then a b c = a b c a since b c 0 tells us that b c = c. On the other hand a b c = ab c a since the average of three numbers is less than or equal to the greatest of the numbers. By transitivity we have a b c a b c. Alt Solution 2: The case where a, b, and c are all positive or zero can be handled as before. For the case where a,b 0 and c < 0, a b c a b c = a b c ab c = 2a2b4c = 2(ab)2(bc) 0.

BAMO 200 Problems and Solutions March 7, 200 4 4 Place eight rooks on a standard 8 8 chessboard so that no two are in the same row or column. With the standard rules of chess, this means that no two rooks are attacking each other. Now paint 27 of the remaining squares (not currently occupied by rooks) red. Prove that no matter how the rooks are arranged and which set of 27 squares are painted, it is always possible to move some or all of the rooks so that: All the rooks are still on unpainted squares. The rooks are still not attacking each other (no two are in the same row or same column). At least one formerly empty square now has a rook on it; that is, the rooks are not on the same 8 squares as before. Solution: Look at the ( 8 2) = 28 pairs of rooks. (Ignore the coloring for now.) Each pair of rooks determines a pair of empty squares in the usual way: take the other two vertices of the rectangle (with sides parallel to the edge of the chessboard, of course) having our given pair of rooks as two vertices. (The opposite vertices will be empty since the rooks are non-attacking.) Furthermore, a given empty square is determined in this way by exactly one pair of rooks the unique rooks in the same row and column as the given empty square. Now by the Pigeonhole Principle, since there are 28 pairs of rooks and only 27 painted squares, one of the pairs of rooks determines a pair of empty squares which are both uncolored. Move these two rooks onto the empty squares instead, and you re done. Many people wanted to put all the rooks on the diagonal, without loss of generality. It needs to be shown that no generality is lost in doing this. One clever approach is to number the rooks through 8, and then number the rows and columns according to which rook is in them. That way every square has coordinates (x,y), which is to say the square is in the column with rook x and the row with rook y. Thus all the rooks have coordinates (x,x) so they can be thought of as being on the diagonal without even having to move them! 5 All vertices of a polygon P lie at points with integer coordinates in the plane, and all sides of P have integer lengths. Prove that the perimeter of P must be an even number. Solution: Travel around the polygon in one orientation (say, counterclockwise), and let the vertices so visited be x,x 2,...,x n. Define x i = x i x i, for i =,2,...,n and x n = x x n. Define y i in a similar way. Then the perimeter is equal to n i= x 2 i y2 i. Since each length xi 2 y2 i is an integer, then for each i, either both x i and y i are even or exactly one is odd (they cannot both be odd using a mod-4 analysis). In the first case, we get an even length, and in the second case, we get an odd length. So we need to show that the second case occurs an even number of times. This follows from the fact that n i= x i = n i= y i = 0. Since 0 is even, there are an even number of odd x i s and there are an even number of odd y i s.

BAMO 200 Problems and Solutions March 7, 200 5 6 Acute triangle ABC has BAC < 45. Point D lies in the interior of triangle ABC so that BD = CD and BDC = 4 BAC. Point E is the reflection of C across line AB, and point F is the reflection of B across line AC. Prove that lines AD and EF are perpendicular. Solution: Based on the brilliancy award-winning solution by Evan O Dorney. Begin by reflecting C over AF to point G, as shown in the diagram. A!!!! E G B D 4! C F As usual we denote α = BAC, β = ABC, and γ = ACB. In order to prove that AD EF, we will show that ADC EFG and that AC EG. To begin with the easier part, by reflection the four angles marked α are congruent, and AE = AC = AG. Thus AC is the angle bisector of isosceles triangle AEG and therefore AC EG. Next, to take a first step toward showing that ADC EFG, we see that BD = CD and BDC = 4α, so triangle AEG and BDC are similar isosceles triangles with base angle 90 2α. (This is why the reflection of C over AF was a brilliant idea!) Furthermore, AGF = ACF = ACB = γ by reflection. Combining these facts, we have DCB = 90 2α, and thus ACD = γ (90 2α) = EGF. Again using the similar triangles EAG and BDC, and because of the reflection ABC = AFG, AG EG = DC BC, FG AG = BC AC. Multiplying these two equations gives FG EG = DC AC. Consequently ADC EFG by side-angle-side similarity. Since AC EG, and both DAC and FEG are oriented in the same direction, the transformation that takes ADC to EFG is a 90 rotation, combined with some dilations and/or translations. This transformation also takes AD to EF, which implies that these lines are perpendicular. Additional notes: It is interesting that this solution did not make use of the fact that, with O the circumcenter of ABC, we have BOC = 2α, and thus D is the circumcenter of BOC. There are many other sets of similar triangles that could be used for an argument like this, based on side-angle-side similarity. Most if not all of them require adding more points to the diagram than just point G, which is yet more evidence of the brilliance of this solution.

BAMO 200 Problems and Solutions March 7, 200 6 7 Let a, b, c, and d be positive real numbers satisfying abcd =. Prove that 2 a ab abc 2 b bc bcd 2 c cd cda 2 d da dab 2. Solution: Let S a = a ab abc S b = b bc bcd S c = c cd cda S d = d da dab. Notice that S a = 2 ( ) 2 S a 2 2 ( ) 2 S a = 2 2 S a. Using similar relations for S b, S c, and S d we see that the left-hand side of the required inequality is greater than or equal to D = 2( S a S b S c S d ). We now have S a = a ab abc abcd = a ( S b ) = ab ( S c ) = abc( S d ). Likewise, S b = bc( S d ) and S c = c( S d ), which yields D = ( 2 S d abc bc c ) = 2. Thus the statement is proved. Alternate solution: Choose positive w,x,y,z such that a = x w,b = y x,c = z y,d = w z Now we can multiply all four new variables by a constant to ensure that w x y z = 2. Then we have 2 a ab abc = 2 x w y w z w = 2 x y z = w 2 2 w w and similarly for the other three terms. Thus each term of the sum has the form Now, to prove a lemma analyzing each of these terms: Proof: Square both sides and multiply by x to get Dividing by x and simplifying, If 0 < x < w 2,then w > 2w. x x > 2x x > 4x 2 ( x) 0 > 4x ( x) = 4x 2 4x. = 2 w w, This last expression is (2x ) 2 which is negative since x < 2. (Note that all the steps of this are reversible, so this final true inequality can be used to work backwards and establish our desired inequality.) Using this result, the original expression is greater than (never equal to) 2 (2w 2x 2y 2x) = 2 2w w.