Effects of Total Harmonic Distortion on Power System Equipment

Similar documents
Harmonic distortion from induction furnace loads in a steel production plant

Investigation of the Effect of Ground and Air Temperature on Very High Frequency Radio Signals

Performance of Magnetostrictive Amorphous Wire Sensor in Motor. Speed Measurement

Power Flow Control/Limiting Short Circuit Current Using TCSC

Achieving a Single Phase PWM Inverter using 3525A PWM IC

Low Power &High Speed Domino XOR Cell

Neuro-Fuzzy Control Technique in Hybrid Power Filter for Power. Quality Improvement in a Three-Phase Three-Wire Power System

Journal of Energy Technologies and Policy ISSN (Paper) ISSN (Online) Vol.5, No.4, 2015

Comparison of Radiation Levels Emission between Compact Fluorescent Lamps (CFLs) and Incandescent Bulbs

Journal of Information Engineering and Applications ISSN (print) ISSN (online) Vol.4, No.11, 2014

Estimation of Electrical Characteristics in Equivalent Circuit Model of Non-ideal Potential Transformer

Microstrip Line Discontinuities Simulation at Microwave Frequencies

Modelling of the Behavior of Lossless Transmission Lines

A comparative study of Total Harmonic Distortion in Multi level inverter topologies

Wallace Tree Multiplier Designs: A Performance Comparison Review

Control Theory and Informatics ISSN (print) ISSN (online) Vol 1, No.2, 2011

Comparison of SPWM and SVM Based Neutral Point Clamped Inverter fed Induction Motor

Low Power Schmitt Trigger

Development of FPGA Based System for Neutron Flux Monitoring in Fast Breeder Reactors

Designing of Different High Efficiency Diode Clamped Multilevel Inverters and their Performance Analysis

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services

Transformer Fault Detection and Protection System

Image Compression Using Haar Wavelet Transform

A New Framework for Color Image Segmentation Using Watershed Algorithm

Prediction Variance Assessment of Variations of Two Second-Order Response Surface Designs

Understanding Harmonics

Thermal Image for Truncated Object Target In The Presence of Vibrations Motions

Transitivity Action of A n on (n=4,5,6,7) on Unordered and Ordered Quadrupples

Application of MRAC techniques to the PID Controller for nonlinear Magnetic Levitation system using Kalman filter

Cross-layer Optimization Resource Allocation in Wireless Networks

The Impact of Choice of Roofing Material on Navaids Wave Polarization

Performance of RS and BCH Codes over Correlated Rayleigh Fading Channel using QAM Modulation Technique

3/29/2012 MAIN TOPICS DISCUSSED ELECTRICAL SYSTEMS AND ELECTRIC ENERGY MANAGEMENT SECTION K ELECTRIC RATES POWER COMPUTATION FORMULAS.

Implementation of High Power Dc-Dc Converter and Speed Control of Dc Motor Using DSP

1. Introduction to Power Quality

Automatic Vehicle Number Plate Recognition for Vehicle Parking Management System

Voltage and Current Waveforms Enhancement using Harmonic Filters

UNDERSTANDING POWER QUALITY

Design of PID Controller for Higher Order Discrete Systems Based on Order Reduction Employing ABC Algorithm

Multivariate Regression Techniques for Analyzing Auto- Crash Variables in Nigeria

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink

OPTIMAL DESIGN OF A SINGLE TUNED PASSIVE FILTER TO MITIGATE HARMONICS IN POWER FREQUENCY

The Role of Mirror Dichroic in Tandem Solar Cell GaAs/Si

ISSN: X Impact factor: (Volume 3, Issue 6) Available online at Modeling and Analysis of Transformer

CHAPTER 4 HARMONICS AND POWER FACTOR

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Determination of Transformer Rating Based on Total Harmonic Distortion Under Balanced Conditions

Generator Advanced Concepts

International Journal of Advance Engineering and Research Development ANALYSIS AND MITIGATION OF HARMONICS IN MEDICAL FIELD

Power Factor and Power Factor Correction

Analog and Digital Circuit Implementation for Input Power Factor Correction of Buck Converter in. Single Phase AC-DC Circuit

Nonconventional Technologies Review no. 4/2009

Understanding Power Quality

Harmonic Analysis to Improve Power Quality

Impact of Harmonic Resonance and V-THD in Sohar Industrial Port C Substation

Harmonic Analysis and Its Mitigation Using Different Passive Filters

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

Power Quality Analyzer for Three Phase Systems

Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces. H.A. Khalik, M. A. Aziz, and E. Farouk.

Developing Knowledge-Based Systems: Car Failure Detection using Expert System

Harmonic Solutions in Electrical Systems. Raed Odeh Application Specialist - Power Quality & Electrical Distribution

Fluke 40/41 Power Harmonics Analysers

Emicon Engineering Consultants L.L.C.

Analysis of Harmonic Distortion in Non-linear Loads

NJWA - Harmonics and Drives Proper System Design

22.0 Harmonics in Industrial Power Systems

An Introduction to Power Quality

Harmonic Requirements

ECET Modern Power

Image Processing of Two Identical and Similar Photos

Alternators Reactance for Nonlinear Loads

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss

Effects of Harmonic Distortion I

Harmonic Distortion Evaluations

Electrical Energy Saving and Economic Benefits from Power System Harmonics Mitigation in the Petrochemical Plants

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Design and Application of Harmonic Passive Filter

POWER QUALITY AND ENERGY EFFICIENCY IN LOW VOLTAGE ELECTRICAL POWER SYSTEM OF THE TECHNICAL UNIVERSITY OF GABROVO

PQ01. Harmonic Solutions for VFD s. Review of Power Control Harmonics, Power Factor, Distortion & Displacement

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

THE COMPREHENSIVE APPROACH TO FACILITY POWER QUALITY

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Harmonic Power. A VFDs.com Whitepaper Written by Ernesto Jimenez

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

Chapter 11. Alternating Current

Improve Power Factor and Reduce the Harmonics Distortion of the System

SECTION 4 TRANSFORMERS. Yilu (Ellen) Liu. Associate Professor Electrical Engineering Department Virginia Tech University

Laboratory no. 3 FLUORESCENT LAMPS FITTINGS

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

POWER FACTOR CORRECTION AND ITS PITFALLS

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Low Pass Harmonic Filters

A Thyristor Controlled Three Winding Transformer as a Static Var Compensator

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

Transcription:

Effects of Total Harmonic Distortion on Power System Equipment GANIYU ADEDAYO. AJENIKOKO 1, ADEDAPO IBUKUNOLUWA. OJERINDE 2 1,2 Department of Electronic & Electrical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria. ABSTRACT. Corresponding Email: ajeedollar@gmail.com Total harmonic distortion, or THD, is the summation of all harmonic components of the voltage or current t waveform compared against the fundamental component of the voltage or current wave: Harmonic is a sinusoidal component of a periodic wave or quantity having a frequency that is integral multiples of the fundamental frequency.. Harmonics can be voltage and/or current related and present in electrical system in multiples of the fundamental frequency. This paper discusses the effects of total harmonic distortion on power system equipment. Various values of fundamental and harmonic voltages were used as input parameters for the computation of THD to establish if their limits fall within the harmonic standards. The results of the paper show that the average value of the THD for the power system equipment is 1.98% which is in agreement with the even harmonic standards of 2%.Keeping low THD values on a system will further ensure proper operation of equipment and longer equipment life span. Keywords: Total harmonic distortion, Power factor correction, Distribution transformers, Fundamental frequency, Harmonic standards. 1. INTRODUCTION. Harmonics are electric voltages and current that appear on electric power system as a result of certain kinds of electric loads. Harmonic frequencies in the power grid are a frequent cause of power quality problems [5]. Harmonics, which is central focus of this study, is a specific type of disturbance that affects the quality of power, often cause by type of load attached to the power supply. It is a series of subsidiary waveforms that that accompany a primary or fundamental waveform. They result when a system produces wave frequencies that are simple in ratios with the fundamental frequency (2:1, 3:1, 4:1, and so on). In electrical power system, the power supply line produces the fundamental frequency (or first harmonic), which is considered as ideal. But when this ideal is disturbed by external factors, other frequencies are produced. These subsequent frequencies are always in integral ratios of the fundamental frequency and distort the original waveform [1]. Harmonic distortion can have detrimental effects on electrical equipments. Unwanted distortion can increase the current in power systems which result in higher temperatures in neutral conductors and distribution transformers. Higher frequency harmonics cause additional core loss in, motors which result in excessive heating of the motor core. These higher order harmonics can also interfere within communication transmission line since they oscillate at the same frequencies as the transmit frequency. If left unchecked, increased temperatures and interference can greatly shorten the life of electronic equipment and cause damage to power systems [3], [8]. The source of harmonics at the consumer end in power system can be any of the following [11]: (a) Single phase loads which include switched mode power supplies (SMPS), electronic ballast, Small UPS units and battery chargers. (b) Three phase loads include variable speed drives and large UPS unit. A nonlinear load at point of consumption can be described as a single-phase non-linear load (a good example is the electronic ballast) or a three-phase non-linear load (a good example is a large UPS unit). Electrical power is generated in the form of alternating current (AC) which is mainly generated as a sinusoidal wave as shown in Figure 1 below: 114

Current or Voltage + Waveform 0 Time - Figure 1: AC Waveform In AC, the movement of electric charge is periodically in reverse direction. The commonest waveform of an AC power circuit is a sine wave as in the case of the wave shown above. This is one of the reasons why it is well suited for power technology and transmission and also for processing information. AC is generated mainly by an alternating voltage source, it has constant amplitude and frequency. Mathematically, alternating voltage and current are represented as shown below Where, V = sin wt (1) I = sin wt + φ (2) = Peak voltage = Peak current w = angular frequency φ = Phase angle t = time A.C finally gets to consumer. Ideally, it is expected that the consumer of electrical power obtain the same sinusoidal waveform that was generated. As a result of unwanted factors, the received power waveform will be distorted. This is illustrated in Figure 2. 115

Current or Voltage + Waveform Time - Figure 2: Distorted Waveform The distortion affects power quality and often causes damage to electrical devices. 1.1 The Measures of Harmonic Distortion Customers should be interested in two aspects of harmonics- equipment susceptibility and equipment emission. The first is the degree of distortion which will cause equipment damage or malfunction and is characterized by the harmonic voltage which the equipment can tolerate. The second is the measure of how equipment will affect the supply and is characterized by the harmonic current drawn [9], [13]. There are several measures of the harmonic distortion, including the level of the voltage at each harmonic. Two in particular are total Harmonic Distortion (THD) and notch depth. The first is important for long term thermal effects. The second for equipment malfunction. 1.2 Harmonic Standards Customers need to be protected from other customers producing excessive distortion on the supply and damaging equipment or causing inconvenient malfunction. The standards address three aspects of harmonics [6]: i. The maximum levels of harmonic voltages which are allowed on the supply, ii. The maximum distortion current that household appliances can draw to ensure that the levels in (i) are met, iii. The maximum distortion current that industrial installation can draw to ensure that the levels in (i) are met. 1.3 Harmonics and Power Factor Correction. The total installation current has two components of current at the supply frequency, power components which are in phase with the voltage and another so-called reactive component. The relationship between the total current and these two components is [2]. The power factor of an installation is given by = + (3) 116

Pf = (4) Customers are to maintain their power factors between 0.9 lagging and unity. Some utilities have a tariff structure which encourages customers to keep their power factor as close to unity as possible reducing the reactive current. This can be conveniently done in most instances by the provision of a suitably sized shunt capacitor. When harmonics are present, the current has an additional high frequency component and equation (1) has to be modified to [4]. = + + (5) With computer installation, is close to zero, but is large and the power factor is less than one. If such a customer installs power factor correction capacitors, then increases due to the capacitor current, further increasing and the power factor. Capacitors are used by both electricity suppliers and customers to improve their power factors which can cause excessive voltage distortion. This impedance which causes voltage drops to occur as a result of current flow is inductive and increases with frequency. Consequently the higher frequency components of current give a correspondingly greeter distortion in the voltage waveform. On the other hand capacitors have impedance which reduces within frequency. The combined effect of the two is the following [7]:- i. At low frequencies, the impedance of the power system is determined by the low inductive impedance of transformers and transmission lines ii. At high frequencies it is determined by the low capacitive impedance of power factor correction capacitors. iii. There is an intermediate range of frequencies where the capacitive and inductive effects can combine to give very high impedance. A small harmonic current within this frequency range can give a very high and undesirable harmonic voltage. This is the condition called resonance. 1.4 Effect of Harmonic Distortion on Equipment. Equipment responds to harmonic differently depending on their method of operation. For example incandescent lights and most types of household electric heaters and stoves are not affected adversely at all [10]. On the other hand, induction motor windings are over heated by harmonics, causing accelerated degradation of insulation and loss of life. The operation of some equipments depends on an accurate voltage wave shape and they can malfunction when harmonic are present. In the supply system, substation transformers and power factor correction capacitors are most affected. Transformers are affected by a distorted current waveform which can cause extra heating leading to a reduction in their service life. Capacitors are affected by the applied voltage waveform which can cause overheating of dielectric with a risk of explosion [12]. Harmonics effects can lead to equipment overheating and reduction in service life by a factor of up to half with consequent economic loss. Unlike most other types of supply problems, harmonics can go unnoticed for many years unless equipment temperature or the voltage waveform is routinely monitored. 2. MATERIALS AND METHOD. The steps involved in this research paper are: i. Obtain relevant information on the power system equipment.. This is usually given in the form of the short-circuit current or fault level, from which an equivalent impedance can be calculated. ii. Estimate the major harmonic sources in the power system equipment. 117

iii. For each harmonic order, model the power system equipment. With the assumption that inductive reactance will increase with frequency; capacitive reactance s will decrease while resistances remain unchanged. iv. Determine the fundamental and harmonic voltages at the point of common coupling from the distorting current injected v. Compute the THD. 3. DISCUSSION OF RESULTS. The relationship between the harmonic voltage and the fundamental voltage is shown in Figure 1. At a fundamental frequency of 110V, the harmonic voltage is 1.2V while with a total harmonic distortion of 0.0208; the harmonic voltage and the fundamental voltage are 2.5V and 120V respectively. The values of the third harmonic distortions fluctuate through the study period. When the fundamental voltage and harmonic voltages are 155V and 4.5V, the third harmonic distortion is 0.0290 even though; a fundamental voltage of 165V corresponds to a harmonic voltage of 2.5V with a third harmonic distortion of 0.0152. This is a slight decrease in the total harmonic distortion of 0.0200 earlier obtained with a fundamental voltage and harmonic voltage of 160V and 3.2V respectively. Figure 2 illustrates the correlation between the harmonic voltage and the total harmonic distortion. It is evident that the harmonic voltage fluctuates between 1.5V and 1.2V in the first instance while the total harmonic distortion also fluctuates accordingly between 0.0150 and 0.0109. The total harmonic distortion increases up to 0.0208 until it started decreasing to 0.0160 at a harmonic voltage of 2.0V. Between harmonic voltage of 2.8V and 4.5V, the third harmonic distortion increases rapidly. The harmonic voltage also increases sharply from 2.5V to 6.0V with a corresponding total harmonic distortion of 0.0122 to 0.0273 until the distortions reduced to 0.0191V at a harmonic voltage of 4.3V. In addition, this total harmonic distortion further decreases to 0.0122 at a harmonic voltage of 2.8V which is a sharp fall in the value. The harmonic voltage further increases appreciably from 2.4V to 9.5V even though, the total harmonic distortion increases appreciably from 0.0122 to 0.0404 and later decreases to 0.0158 at a harmonic voltage of 3.8V. Harmonic Voltage (volt) 10 9 8 7 6 5 4 3 2 1 0 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 Figure 1: Harmonic Voltage Versus Fundamental Voltage 118

Harmonic Voltage 10 9 8 7 6 5 4 3 2 1 0 Third Harmonic Distortion Figure 2: Harmonic Voltage Versus Third Harmonic Distortion 4. CONCLUSION. The effect of total harmonic distortion on power system equipment has been presented. The presentation started with the computation of total harmonic distortion for power system equipment using various values of the fundamental and harmonic voltages as input parameters. It was observed that the average percentage value of the THD for the power system equipment is 1.98% which is in accordance with the even harmonic standards of 2%. 5. REFERENCES [1] Arrilaga J.,Bradley D.A and Bodger P.S(2005): Power system harmonics John Wiley Inc,, Third Edition, Pp 56-63. [2] Bishop M.T and Gilker C (1993): Harmonics caused by transformer heating evaluated by a portable PC- Controlled meter, 37 th Annual rural electric power conference, Pp 9-15. [3] David C (2001): Harmonics:Causes and Effects,Chopper Development Association, Pp 65-72. [4] Fitzgerald A.E, Kingsley C and Usman S.D(1990): Electric machinery, Fifth Edition, McGraw-Hill Companies Inc, Pp 78-97. [5] Gonzalez D.A and McCall, J.C (2011): Design of filters to reduce harmonic distortion in industrial power systems, Proc. IAS Annual Meeting, Pp.361-370. [6] IEEE Std. 519(1992): IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Publications, 445 Hoes Lane, P.O.Box 1331, Piscataway, USA.Pp.7-12. [7] Kraus T and Fleisch J. (1999): Electromagnetics with applications, Fifth Edition, McGraw-Hill Companies Inc., Pp 123-132. [8] Lundquist J (2001): On harmonic distortion in power systems Chalmers University of Technology, Department of Electrical Power Engineering, Pp 33-37 119

[9] Masoum M.A.S, Fuchs E.F and Roesler D.J (1991): Large signal non-linear model of anisotropic transformer for non-sinusoidal operation, Part II, IEEE Trans PD, Vol. 6, No. 4, Pp 96-102. [10] Mohan S, Undeland J and Robbins (1998): Power Electronics, John Wiley and sons Inc, Second Edition, Pp 41-47. [11] Vic G (2001): Harmonic Distortion in Electrical Supply System, PQC Tech Note No. 3 (Power Quality Centre), Elliot Sound Products, Pp 34-41. [12] Whitaker, J.C (1999): AC power systems Handbook CRC Press LLC, Second Edition, Pp 13-15. [13] Yildrim D and Fuchs E(2000): Transformer derating and comparison with harmonic loss factor approach IEEE Trans. PD, Vol. 18, No. 1, Pp 56-67. 120

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing. More information about the firm can be found on the homepage: http:// CALL FOR JOURNAL PAPERS There are more than 30 peer-reviewed academic journals hosted under the hosting platform. Prospective authors of journals can find the submission instruction on the following page: http:///journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors. MORE RESOURCES Book publication information: http:///book/ Academic conference: http:///conference/upcoming-conferences-call-for-paper/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar