Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency

Similar documents
Optics Communications

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Wide bandwidth and high coupling efficiency Si 3 N 4 -on-soi dual-level grating coupler

Figure 1 Basic waveguide structure

Grating coupled photonic crystal demultiplexer with integrated detectors on InPmembrane

Silicon photonic devices based on binary blazed gratings

A thin foil optical strain gage based on silicon-on-insulator microresonators

Two-dimensional optical phased array antenna on silicon-on-insulator

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Plane wave excitation by taper array for optical leaky waveguide antenna

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Integrated metamaterials for efficient and compact free-space-to-waveguide coupling

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Fully-Etched Grating Coupler with Low Back Reflection

Long-Working-Distance Grating Coupler for Integrated Optical Devices

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

Loss Reduction in Silicon Nanophotonic Waveguide Micro-bends Through Etch Profile Improvement

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Design and Simulation of Optical Power Splitter By using SOI Material

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

High-efficiency single etch step apodized surface grating coupler using subwavelength structure

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Waveguiding in PMMA photonic crystals

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Fibre Grating Couplers

Ultra-Compact Low-loss Broadband Waveguide Taper in Silicon-on-Insulator

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Silicon Photonic Device Based on Bragg Grating Waveguide

Reduction in Sidelobe Level in Ultracompact Arrayed Waveguide Grating Demultiplexer Based on Si Wire Waveguide

SILICON-ON-INSULATOR (SOI) is emerging as an interesting

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Test-station for flexible semi-automatic wafer-level silicon photonics testing

Tuning of Silicon-On-Insulator Ring Resonators with Liquid Crystal Cladding using the Longitudinal Field Component

Grating-waveguide structures and their applications in high-power laser systems

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

Heinrich-Hertz-Institut Berlin

Demonstration of Silicon-on-insulator midinfrared spectrometers operating at 3.8μm

Tunable Color Filters Based on Metal-Insulator-Metal Resonators

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION

Research Article Subwavelength Grating Structures in Silicon-on-Insulator Waveguides

Photonics and Optical Communication

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

Reduction in Sidelobe Level in Ultracompact Arrayed Waveguide Grating Demultiplexer Based on Si Wire Waveguide

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

INTEGRATED ACOUSTO-OPTICAL HETERODYNE INTERFEROMETER FOR DISPLACEMENT AND VIBRATION MEASUREMENT

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides

Comparison between strip and rib SOI microwaveguides for intra-chip light distribution

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter

A single-lithography SOI rib waveguide sensing circuit with apodized low back-reflection surface grating fiber coupling

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP. D. Seyringer

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Design of an 845-nm GaAs Vertical-Cavity Silicon-Integrated Laser with an Intracavity Grating for Coupling to a SiN Waveguide Circuit

Waveguide Bragg Gratings and Resonators LUMERICAL SOLUTIONS INC

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Research Article Large-Area Binary Blazed Grating Coupler between Nanophotonic Waveguide and LED

Si and InP Integration in the HELIOS project

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Chapter 1 Introduction

Large Scale Silicon Photonic MEMS Switch

UC Santa Barbara UC Santa Barbara Previously Published Works

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Nano electro-mechanical optoelectronic tunable VCSEL

Convergence Challenges of Photonics with Electronics

Fiber-Optic Polarizer Using Resonant Tunneling through a Multilayer Overlay

On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

This writeup is adapted from Fall 2002, final project report for by Robert Winsor.

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

LASER &PHOTONICS REVIEWS

A Semiconductor Under Insulator Technology in Indium Phosphide

Supplementary Figure 1 Reflective and refractive behaviors of light with normal

Supporting Information: Plasmonic and Silicon Photonic Waveguides

A Novel Vertical Directional Coupler Switch With Switching-Operation-Induced Section and Extinction-Ratio-Enhanced Section

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

UC Santa Barbara UC Santa Barbara Previously Published Works

All-optical logic based on silicon micro-ring resonators

Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous fieldof-view

Hybrid vertical-cavity laser integration on silicon

SUPPLEMENTARY INFORMATION

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

grating coupler array on the SOI platform for fan-in/fan-out of multi-core fibers with low insertion

Design and characterization of low loss 50 picoseconds delay line on SOI platform

Transcription:

Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency Wissem Sfar Zaoui, 1,* María Félix Rosa, 1 Wolfgang Vogel, 1 Manfred Berroth, 1 Jörg Butschke, 2 and Florian Letzkus 2 1 Institute of Electrical and Optical Communications Engineering, University of Stuttgart, Pfaffenwaldring 47, 7569 Stuttgart, Germany 2 Institut für Mikroelektronik Stuttgart, Allmandring 3a, 7569 Stuttgart, Germany * wissem.sfarzaoui@int.uni-stuttgart.de Abstract: A highly efficient grating structure for the coupling between standard optical fibers and single-mode waveguides in the silicon-oninsulator platform realized in a CMOS fabrication process is presented. The cost-effective method introduces a backside metal mirror to the grating coupler without need of an extensive wafer-to-wafer bonding. A coupling efficiency of 1.6 db (around 69%) near the telecommunication wavelength 155 nm and a large 1dB-bandwidth of 48 nm are achieved. 212 Optical Society of America OCIS codes: (13.13) Integrated optics; (5.195) Diffraction gratings. References and links 1. D. Taillaert, P. Bienstman, and R. Baets, Compact efficient broadband grating coupler for silicon-on-insulator waveguides, Opt. Lett. 29(23), 2749 2751 (24). 2. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, A compact two-dimensional grating coupler used as a polarization splitter, IEEE Photon. Technol. Lett. 15(9), 1249 1251 (23). 3. Z. Wang, Y. Tang, L. Wosinski, and S. He, Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath, IEEE Photon. Technol. Lett. 22(21), 1568 157 (21). 4. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, Grating couplers for coupling between optical fibers and nanophotonic waveguides, Jpn. J. Appl. Phys. 45(8A), 671 677 (26). 5. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, Highly efficient grating coupler between optical fiber and silicon photonic circuit, in Conference on Lasers and Electro-Optics, Baltimore, Maryland, CTuC6 (29). 6. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides, J. Lightwave Technol. 25(1), 151 156 (27). 7. C. Kopp, E. Augendre, R. Orobtchouk, O. Lemonnier, and J. M. Fedeli, Enhanced fiber grating coupler integrated by wafer-to-wafer bonding, J. Lightwave Technol. 29(12), 1847 1851 (211). 8. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible siliconon-insulator platform, Opt. Express 18(17), 18278 18283 (21). 9. http://www.rsoftdesign.com/ 1. Patent pending. 11. http://www.soitec.com/ 12. J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, SOI wafer flow process for stencil mask fabrication, Micr. Eng. 46(1-4), 473 476 (1999). 13. http://www.cargille.com/ 1. Introduction Due to the large dimension mismatch between the standard single mode optical fiber core and integrated waveguides in the promising silicon-on-insulator (SOI) platform, high coupling losses exist between silicon photonic integrated circuits (SiPIC) and the outside world. To 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B238

ensure the single mode condition, the integrated SOI waveguides have dimensions as small as.5 μm x.25 μm, whereas the core of a single mode fiber (SMF) has a diameter around 1 μm. Meanwhile, the SOI platform has become unforfeitable for designing optoelectronic devices owing to the high integration possibility driven by the large refractive index difference between silicon (Si) and silicon dioxide (SiO 2 ) and the complementary metaloxide-semiconductor (CMOS) compatibility, offering compactness and cost effectiveness in the puzzle elements of optical communication networks for bit rates of 1 Gbit/s and beyond. The connection of optical integrated transmitters and receivers to the fiber backbone is a non-trivial task since coupling to the PICs requires large alignment tolerance, high bandwidth and especially high efficiency. An elegant way to ensure a good broadband coupling efficiency between SMFs and SiPICs has been presented the last years using Bragg structures called grating couplers [1]. In addition to an acceptable alignment tolerance, these elements allow a simple vertical on-wafer characterization instead of complicated butt-coupling and additional cleaving steps. They can be realized as one or two-dimensional [1,2] structures and can serve to couple one or both orthogonal polarization states, acting as polarization beam splitters [2,3]. The first fabricated standard grating couplers had a coupling efficiency of around 5 db [4]. By a careful design this value can be theoretically furthermore enhanced to better than 1 db. Efficient coupling is achieved by matching the diffracted field to the Gaussian mode profile of the SMF and increasing the directionality, i.e. the ratio of the diffracted optical power from the fiber toward the integrated waveguide, or vice versa, to the total diffracted power. As the first issue is settled by an adequate design of the gratings period, fill factor, etch depth and incident angle, the second challenge requires the use of a backside mirror at an adequate distance to redirect constructively the diffracted power toward the substrate back to the Si waveguide. Despite material thickness engineering, this loss can exceed 3% and represents the main reason for the degraded efficiency in structures without backside mirrors. For this purpose two solutions have been utilized: a distributed Bragg reflector (DBR) [5] and a metal layer as a perfect mirror [6,7]. A third solution to enhance the coupling efficiency has also been recently presented and proposes the use of a Si overlay that makes the structure intrinsically directional without the need of reflecting back downward optical power [8]. All three solutions assured a high coupling efficiency of 1.6 db near the telecommunication wavelength 155 nm, however with certain technological drawbacks. As the latter solution needs the introduction of an additional amorphous Si layer, the former method with the DBR necessitates at least two sequences, where each sequence is composed of Si and SiO 2 layers with exact dimensions of a quarter wavelength each. Moreover, the solution that introduces a gold metal mirror requires many extensive steps in a CMOS non-compatible process with a wafer-to-wafer bonding technique. In this work we present highly efficient grating couplers with a backside aluminum (Al) mirror to enhance the directionality of the structure. The fabrication has been realized in a CMOS line, without the need of wafer-to-wafer bonding procedures, thus, simplifying the realization of cost-effective interfaces between SMFs and SiPICs. 2. Grating couplers design To design a coupler with periodic gratings that serve to couple the light from a fiber to a waveguide or vice versa, the Bragg condition kin 2 sinα + m π = β Λ has to be first fulfilled. Here, k in = 2π n top / λ is the incident wave number with the refractive index of the top cladding layer n top and the free space wavelength λ, α is the fiber off-vertical tilt angle, m is the diffraction order, Λ is the grating period, and β = 2π n eff / λ is the (1) 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B239

propagation constant of the optical mode in the gratings with the effective refractive index n eff. Commonly, these different parameters are optimized to have a maximum coupling efficiency only for the diffraction mode m = 1. This has been realized by two-dimensional finitedifference time-domain (FDTD) simulations using the commercial software RSoft FullWAVE [9] after fixing some structure dimensions and material parameters. Using an SOI-platform with a Si-layer thickness of 25 nm, the gratings are designed to be etched 7 nm in this layer with a fill factor FF =.5. After optimizing the grating period, the tilt angle, and the lateral fiber position along the z-direction to achieve a maximum mode matching at a wavelength of 155 nm for the transversal electric (TE) polarization state, the thickness of the buried oxide (BOX) has been investigated since it has to produce a constructive interference between the diffracted field toward the film layer and the field that is reflected at the bottom metal mirror to increase the directionality of the grating coupler, and hence to guarantee a maximum transmission from the fiber to the integrated waveguide. Here, the grating period and the tilt angle are chosen as Λ = 6 nm and α = 9, respectively. Other Λ/α-combinations are also possible to get a comparable high transmission when the fiber position is appropriately defined. Figure 1(a) illustrates the proposed structure with the BOX-thickness d BOX and the Al mirror underneath [1]. (a) (b) -.76 db 25 nm d BOX Λ = 6 nm 7 nm SiO 2 Si -1-12 -14-16 -18 2.95 μm Al SiO 2 (c) 2.6 2.8 3. 3.2 3.4 BOX-thickness [μm] Si TE-output z x y x z BOX Metal mirror Fig. 1. (a) Three dimensional cross section of the proposed grating coupler. (b) Simulated coupling efficiency of the coupler with Λ = 6 nm and α = 9 versus the BOX-thickness at a wavelength of 155 nm. (c) Electric field distribution of the structure with d BOX = 3 µm. The simulated coupling efficiency of the proposed structure versus the BOX-thickness in Fig. 1(b) shows that constructive interference occurs at d BOX = 2.95 μm where a maximum of.76 db can be achieved. Since the behavior is periodic with a difference of a half wavelength between two consecutive peaks, smaller BOX-thicknesses can also be used to obtain the same result. For the fabrication process a standard SOI-wafer with a 3 μm SiO 2 substrate and a 25 nm thick top Si-layer is used [11]. This has the advantage to simplify the fabrication process and minimize the costs since the metal mirror can be directly placed underneath the BOX after etching a membrane window without additional technological steps to adjust d BOX. At 3 μm the coupling efficiency still reaches a high value of.82 db. Figure 1(c) shows the simulated electric field distribution of the structure with the above mentioned parameters at a wavelength of 155 nm. In this simulation a 1 µm wide Gaussian beam is launched onto the coupler and diffracted at the gratings to the waveguide and toward the substrate. The latter part of light is then reflected back at the metal mirror and is driven again to the waveguide, leading to a high coupling efficiency. To investigate the spectral 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B24

properties of the presented grating coupler in comparison to a similar structure without the metal mirror, a second simulation has been carried out at wavelengths between 15 nm and 16 nm. Monitors are moreover placed appropriately to calculate the reflected power above the gratings and the diffracted part toward the Si substrate. The results are illustrated in Fig. 2. Normalized transmission [db] -1-12 Diffracted to substrate TE-output Δλ 1dB = 45 nm Reflected.2 db Normalized transmission [db] -1-12 -.82 db Reflected Δλ 1dB = 56 nm TE-output -14 15 152 154 156 158 16 (a) -14 15 152 154 156 158 16 (b) Fig. 2. Simulated normalized transmission of the launched power onto the grating coupler (a) without the metal mirror, and (b) with the metal mirror on the backside. For both couplers Λ = 6 nm, α = 9, and d BOX = 3 µm. The normalized transmission spectrum of the grating coupler without the metal mirror in Fig. 2(a) shows that a coupling efficiency of 2.2 db at 155 nm can be achieved. Indeed, the Si-layer/BOX interface represents a mirror due to the large refractive index difference between Si and SiO 2, but only a fraction of R = (n Si n SiO2 ) 2 / (n Si + n SiO2 ) 2 = 17% of the diffracted power can be reflected back and contributes to the coupling efficiency. Here, the refractive index of Si and SiO 2 at a wavelength of 155 nm are n Si = 3.474 and n SiO2 = 1.444, respectively. Hence, a considerable part of the power around 5 db (more than 3%) is refracted to the bottom Si substrate and is lost. The reflected part of power at the gratings is relatively low and approaches 12 db (around 6%) at the target wavelength. Figure 2(b) shows an appreciable improvement of around 1.4 db in the coupling efficiency, which increases to.82 db, as discussed above. Since the diffracted power toward the substrate is reflected at the perfect metal mirror, an important part is redirected to the TE-output and enhances the efficiency of the grating coupler. Besides, a 1dB-bandwidth amelioration from 45 nm to 56 nm and a 3dB-bandwidth from 78 nm to 91 nm are theoretically achievable. 3. Fabrication and measurement The starting point is a standard SOITEC wafer with a 3 μm SiO 2 substrate and a 25 nm thick top Si-layer. The designed structures are fabricated according to an SOI wafer flow concept using standard technological processes [12]. In a first step the gratings are defined by electron beam lithography and the pattern transfer into the top Si-layer is realized by means of dry etching until an etch depth of 7 nm. In a second lithography step the definition of the waveguide structures is performed and the top Si-layer is dry etched until the BOX. The following protection layer deposition is of main importance since it regulates the stress of the whole system and prevents the thin Si layer to break. This is done by a SiO 2 passivation, which serves also as a cladding and ensures a symmetric environment to the gratings and waveguides. Finally, the mirror windows are defined on the wafer backside and are wet etched until the BOX, so that an appropriate metal deposition (e.g. aluminum) can be achieved in the membrane cavity. The mirror windows can also be realized in a similar way using a dry etching process. This cost-effective procedure represents a major simplification to the CMOS non-compatible process introduced in [6] that uses an extensive wafer-to-wafer 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B241

bonding process in addition to a gold layer as metal mirror of the grating coupler. Thereby, the gratings are structured on the SOI-wafer; afterwards an adequate polymer and a gold layer are deposited, and then the thick Si substrate is removed, so that the BOX becomes the top cladding. Finally, the wafer is bonded with another host wafer, and hence the fabrication process cannot be transferred to a standard CMOS line. Figure 3(a) shows a picture of a fabricated structure with two identical grating couplers serving as input and output optical power interfaces, linked by a 1 mm long and 1 µm wide waveguide, and having a metal mirror below each of them. The inset is a zoom-in of the gratings etched in the Si-layer. Figure 3(b) depicts a front and a back side view of the chip where the mirror window is clearly seen. 1 µm (a) (b) Fig. 3. (a) Microscopic picture of the fabricated structure composed of two grating couplers with backside mirrors and connected by a waveguide. (b) Front and back side view of the metal mirror. To determine the coupling efficiency of the grating coupler in the conventional optical telecommunication band, a measurement setup composed of a tunable laser source, a polarization controller and an optical power meter have been used. Piezoelectric elements have also been utilized to exactly adjust the fibers on the grating couplers. The coupling efficiency in db is then calculated as 1 η db = ( Pin, dbm Pout, dbm as aw L) (2) 2 where P in,dbm is the laser optical power, P out,dbm is the measured output power, a S is the setup loss including connectors and polarization controller loss, a W is the waveguide loss per unit length and L is the waveguide length. For simplicity, waveguides with a width of 1 μm have been designed to connect the grating couplers; therefore the waveguide loss is very small and can be neglected (.5 db/mm). When designing the structures using single mode waveguides having widths in the order of 5 nm, an adequate tapering and larger additional waveguide losses, especially caused by the sidewall roughness, have to be taken into consideration. In order to prevent Fresnel reflections between optical fibers and grating couplers a standard index matching liquid with a refractive index of around 1.45 at 155 nm has been used [13]. Figure 4 illustrates the coupling efficiency of three grating couplers with different periods from 595 nm to 65 nm at a fiber tilt angle of 8 over the wavelength. The zoom-in of the figure shows that a maximum coupling efficiency of 1.63 db (around 69%) at a wavelength of 1539 nm is achieved using a structure with Λ = 6 nm. The discrepancy to the simulated results can be explained by the fluctuation of the BOX-thickness over the wafer and some deviation from the designed target values. Nevertheless, the obtained coupling efficiency using the presented cost-effective CMOS-compatible technique is state-of-the-art. The 1dBbandwidth is measured to be 48 nm, whereas the 3dB-bandwidth is around 78 nm. 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B242

-1.4-1 -3-5 -7 595 nm 6 nm 65 nm -1.6-1.8..2.4.6 Δλ 1dB = 48 nm -1.63 db 15 152 154 156 158.8 151 152 153 154 155 156 Fig. 4. Measured coupling efficiency of 3 different grating couplers with Λ = 595 nm, 6 nm, 65 nm with a metal mirror underneath at a fiber tilt angle of 8. The zoom-in shows the high coupling efficiency of 1.63 db at 1539 nm achieved by the coupler having a period of 6 nm. To emphasize the coupling efficiency enhancement of the introduced Al mirror on the coupler backside, a similar structure with Λ = 6 nm has been fabricated on the same wafer without mirror. It can be seen in Fig. 5 that an amelioration of 1.6 db can be achieved due to the increase of the directivity, and hence a better transmission, as predicted in the simulations. -1 With metal mirror -3-5 -7 1.6 db Without metal mirror 15 152 154 156 158 Fig. 5. Measured coupling efficiency of the designed grating coupler with and without the backside metal mirror. 4. Conclusion We have presented in this work a grating coupler that allows high coupling efficiency from standard single mode optical fibers to photonic integrated circuits realized by a simple and cost-effective CMOS compatible technological method. We have designed, fabricated and measured a structure with an efficiency of 1.6 db at a wavelength of 1539 nm and a 1dBbandwidth of 48 nm for TE polarization using a standard SOITEC wafer with 3 μm BOXthickness. This method can also be used to enhance the capability of other types of couplers as the two-dimensional structures and the polarization splitters when designing the mirror adequately. Acknowledgments This work has been supported by a grant from Stuttgart Center of Photonic Engineering (SCoPE) and partly by Deutsche Forschungsgemeinschaft (DFG) under Contract No. BE 2256/8-3. 1 December 212 / Vol. 2, No. 26 / OPTICS EXPRESS B243