RT9167/A. Low-Noise, Fixed Output Voltage, 300mA/500mA LDO Regulator Features. General Description. Applications. Ordering Information RT9167/A-

Similar documents
RT9167/A. Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator. Features. General Description. Applications. Ordering Information

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT mA, 0.5% Accuracy Low Dropout, Ultra Low Noise Voltage Regulator. Features. General Description. Applications. Ordering Information

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator. Features. General Description.

RT9198/A. 300mA, Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Ordering Information RT9198/A- Features. Marking Information

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications. Ordering Information

RT9043- High PSRR, Low Dropout, 400mA Adjustable LDO Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9187B. 600mA, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information RT9187B

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW)

RT9041A/B. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

150mA, Low-Dropout Linear Regulator with Power-OK Output

RT mA CMOS LDO Regulator with 15μA Quiescent Current. Features. General Description. Applications. Ordering Information. Pin Configurations

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. Features. General Description. Applications. Ordering Information. Marking Information

RT9179A. Adjustable, 500mA LDO Regulator with Enable. General Description. Features. Applications. Ordering Information. Pin Configurations

500mA Low Noise LDO with Soft Start and Output Discharge Function

RT A, Ultra Low Dropout LDO. General Description. Features. Applications. Pin Configurations. Ordering Information RT9025-

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

RT9173/A. Peak 3A Bus Termination Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9179. Adjustable, 300mA LDO Regulator with Enable. General Description. Features. Applications. Ordering Information. Marking Information

RT μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features

MAX8863T/S/R, MAX8864T/S/R. Low-Dropout, 120mA Linear Regulators. General Description. Benefits and Features. Ordering Information.

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information RT9059(- )

RT9041F. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. Features. General Description. Applications. Ordering Information

RT9041E. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information RT9041E-

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications

RT2515A. 2A, Low Input Voltage, Ultra-Low Dropout Linear Regulator with Enable. General Description. Features. Applications

TOP VIEW. OUTPUT 1.5V TO 3.3V AT 200mA MAX8532 MAX8532EBT

RT μA I Q, 300mA Low-Dropout Linear Regulator. General Description. Features. Pin Configuration. Applications

RT9022. High Voltage, Low Quiescent, 60mA LDO Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT mA 3-Terminal Positive Regulator General Description Features Low Dropout, Maximum 1.3V at 150mA Fast Transient Response

RT9167/A. Low-Noise, Fixed Output Voltage, 200mA/500mA LDO Regulator. General Description. Features. Applications. Pin Configurations

RT V, 2μA, I Q, 100mA Low Dropout Voltage Linear Regulator. General Description. Features. Ordering Information RT2558- Applications

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23

RT9067. Ultra Low Power, 14V, 200mA LDO Regulator

500mA Low-Dropout Linear Regulator in UCSP

RT9059A. 3A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Ordering Information. Marking Information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

Ultra-Low Noise Ultra-Fast 300mA LDO Regulator. Features

BL9110 1A Low Dropout, Low Quiescent Current High PSRR CMOS Linear Regulator

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. Features. General Description. Applications. Ordering Information. Marking Information

Low Noise 300mA LDO Regulator General Description. Features

RT9008 SS. Low Dropout Linear Regulator Controller with Soft-Start. General Description. Features. Ordering Information.

PART MAX1658C/D MAX1659C/D TOP VIEW

RT9199. Cost-Effective, 2A Peak Sink/Source Bus Termination Regulator. General Description. Features. Applications. Ordering Information

MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator

RT9064. Ultra Low Power, 14V, 200mA Low-Dropout Linear Regulator. General Description. Features. Pin Configurations. Applications

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications

RT9173B. 2A Bus Termination Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9073A. 1μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features. Ordering Information RT9073A- Applications. Marking Information

RT9209/A. Synchronous Buck PWM DC-DC with Enable & PGOOD. Preliminary. Features. General Description. Applications. Ordering Information

Low-Dropout, 300mA Linear Regulators in SOT23

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. Features. General Description. Applications. Ordering Information. Marking Information

TOP VIEW. Maxim Integrated Products 1

RT Channel Charge Pump White LED Driver with Low Dropout Current Source. Preliminary. Features. General Description. Ordering Information

RT9053A. Low Dropout, 400mA Adjustable Linear Regulator. Features. General Description. Applications. Ordering Information RT9053A. Pin Configurations

MP20142 Dual Channel, 200mA Linear Regulator With Programmable Output Voltage and Output Discharge

id9309 Ultra-Low Noise Ultra-Fast 300mA LDO Regulator Features

RT CH Power Management IC. General Description. Features. Applications. Pin Configurations

VIN VOUT GND SHDN V SHDN AIC1730. Low Noise Low Dropout Linear Regulator

RT9173B. 2A Bus Termination Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RTQ2516-QT. 2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. General Description. Features. Applications. Ordering Information

RT2517A. 1A, 6V, Ultra Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9018A/B. Maximum 3A, Ultra Low Dropout Regulator. General Description. Features. Applications. Marking Information. Ordering Information

RT9266B Tiny Package, High Efficiency, Step-up DC/DC Converter General Description Features 1.0V Low Start-up Input Voltage at 1mA Load

RT mΩ, 1A Power Multiplexer. Preliminary. General Description. Features. Applications. Ordering Information. Pin Configurations

RT mA 3-Channel Pulse Dimming Current Source LED Driver. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9070B. 70V, Low Dropout Voltage Linear Regulator. Features. General Description. Marking Information. Applications. Simplified Application Circuit

500mA, Low-Voltage Linear Regulator in µmax

RT9085A. 1A, 5.5V, Ultra Low Dropout Linear Regulator. Features. General Description. Pin Configuration. Applications. Marking Information

DUAL CHANNEL LDO REGULATORS WITH ENABLE

LP2980-ADJ Micropower SOT, 50 ma Ultra Low-Dropout Adjustable Voltage Regulator

AME. High PSRR, Low Noise, 150mA CMOS Regulator AME8852. n General Description. n Typical Application. n Features. n Functional Block Diagram

80V, Low Dropout Voltage Linear Regulator

RT9161/A. 300/500mA Low Dropout Linear Voltage Regulator. General Description. Features. Ordering Information RT9161/A- Applications

MP2009 Ultra-Low-Noise Low-Dropout, 120mA Linear Regulator

RT9269. Tiny Package, High Efficiency, Constant Current LED Driver. General Description. Features. Applications. Pin Configurations

RT9052. Single Channel LED Current Source Controller. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9266B. Tiny Package, High Efficiency, Step-Up DC/DC Converter. General Description. Features. Applications. Ordering Information RT9266B

500mA LDO Regulator. Product Description. Applications. Typical Application Circuit. Block Diagram GS2905

RT9285A/B. Tiny Package, High Performance, Diode Embedded White LED Driver. Preliminary. Features. General Description.

RT9363A. 3 Channels 90mA x1/x2 Charge Pump White LED Driver. General Description. Features. Applications

Features V OUT C BYP. Ultra-Low-Noise Regulator Application

Features. Applications. Adjustable Regulator Application. (*See Minimum Load Current Section)

RTQ2569-QA. 200mA, 36V, 2 A IQ, Low Dropout Voltage Linear Regulator. Features. General Description. Applications

RT8474A. High Voltage Multiple-Topology LED Driver with Open Detection. General Description. Features. Ordering Information.

Low-Input-Voltage, 500mA LDO Regulator with RESET in SOT and TDFN

Low-Noise, Low-Dropout, 150mA Linear Regulators with '2982 Pinout

PART NC OUT OUT RESET OUTPUT

PAM3112. Description. Pin Assignments. Features. Applications. Typical Applications Circuit NOT RECOMMENDED FOR NEW DESIGN USE AP2127

MIC5202. Dual 100mA Low-Dropout Voltage Regulator. Features. General Description. Pin Configuration. Ordering Information. Typical Application

RT9705A. 80mΩ, 1A Power Multiplexer. Preliminary. General Description. Features. Applications. Ordering Information. Pin Configurations

500mA, Low-Voltage Linear Regulator in Tiny QFN

500mA CMOS Ultra Low Dropout Linear Regulator

Transcription:

General Description The RT9167/A is a 3mA/mA low dropout and low noise micropower regulator suitable for portable applications. The output voltages range from 1.V to.v in 1mV increments and 2% accuracy. The RT9167/A is designed for use with very low ESR capacitors. The output remains stable even with 1µF ceramic output capacitor. The RT9167/A uses an internal PMOS as the pass device, which does not cause extra current in heavy load and dropout conditions. The shutdown mode of nearly zero operation current makes the IC suitable for battery-powered devices. Other features include a reference bypass pin to improve low noise performance, current limiting, and over temperature protection. Ordering Information RT9167/A- Package Type B : SOT-2 BR : SOT-2 (R-Type) S : SOP-8 Operating Temperature Range C : Commercial Standard P : Pb Free with Commercial Standard 1 : 1.V 16 : 1.6V : 9 :.9V :.V 2H : 2.8V ma Output Current 3mA Output Current Pin Configurations RT9167/A Low-Noise, Fixed, 3mA/mA LDO Regulator Features Stable with Low-ESR Output Capacitor Low Dropout Voltage (3mV @ 3mA) Low Operation Current 8µA Typical Shutdown Function Low Noise Output Low Temperature Coefficient Current and Thermal Limiting Custom Voltage Available SOT-2 and SOP-8 Packages Applications Cellular Telephones Laptop, Notebook, and Palmtop Computers Battery-powered Equipment Hand-held Equipment (TOP VIEW) 1 2 3 SOT-2 1 2 3 Marking Information For marking information, contact our sales representative directly or through a RichTek distributor located in your area, otherwise visit our website for detail. SOT-2 (R-Type) 8 2 7 3 6 SOP-8 1

Functional Pin Description Pin Name Pin Function Input Voltage Ground Active Low Shutdown Input Reference Noise Bypass Function Block Diagram VREF Shutdown and Logic Control + MOS Driver - Error Amplifier Current-Limit and Thermal Protection R1 R2 Typical Application Circuit RT9167/A V IN + + V OUT C IN 1uF C OUT 1uF ON OFF C 1nF 2

Absolute Maximum Ratings Input Voltage ------------------------------------------------------------------------------------------------------------ 8V Power Dissipation, P D @ T A = 2 C SOT-2 -------------------------------------------------------------------------------------------------------------------.2W SOP-8 --------------------------------------------------------------------------------------------------------------------.62W Electrical Characteristics ( =.V, CIN = 1µF, COUT = 1µF, TA = 2 C, unless otherwise specified) Input Voltage Range RT9167/A Operating Junction Temperature Range -------------------------------------------------------------------------- C to 12 C Storage Temperature Range ---------------------------------------------------------------------------------------- 6 C to 1 C Package Thermal Resistance SOT-2, θ JA ------------------------------------------------------------------------------------------------------------- 2 C/W SOP-8, θ JA -------------------------------------------------------------------------------------------- 16 C/W Lead Temperature (Soldering, 1 sec.) --------------------------------------------------------------------------- 26 C Parameter Symbol Test Conditions Min Typ Max Units V IN 2.9 -- 7 I L = ma 2.7 -- 7 Accuracy V OUT I L = 1mA -2 -- +2 % Maximum Output Current Current Limit Quiescent Current Dropout Voltage (Note) (V OUT(Normal) = 3.V Version) RT9167 3 -- -- I MAX -- -- RT9167 -- -- I LIMIT R LOAD = 1Ω 7 -- RT9167/A No Load -- 8 1 RT9167/A I G I OUT = 3mA -- 9 1 I OUT = ma -- 9 1 RT9167/A I OUT = 1mA -- 1.1 RT9167/A I OUT = ma -- 1 V DROP RT9167/A I OUT = 3mA -- 3 I OUT = ma -- 6 7 Line Regulation V LINE V IN = (V OUT +.1) to 7V, I OUT =1mA -- -- 6 mv/v Load Regulation RT9167/A I OUT = ma to 3mA -- -- 3 V LOAD IOUT = ma to ma -- -- 3 Input High Threshold V IH V IN = 3V to.v 1.6 -- -- V Input Low Threshold V IL V IN = 3V to.v -- --. V Bias Current I SD -- -- 1 na Shutdown Supply Current I GSD V OUT = V --.1 1 µa Thermal Shutdown Temperature T SD -- 1 -- C V ma ma µa mv mv Output Noise e NO C = 1nF, C OUT = 1µF -- 3 -- nv Hz Ripple Rejection PSRR F = 1Hz, C = 1nF, C OUT = 1µF -- 8 -- db Note: Dropout voltage definition: V IN - V OUT when V OUT is mv below the value of at V IN = +.V 3

Typical Operating Characteristics 3.33 vs. Temperature 12 Quiescent Current vs. Temperature 3.32 1 3.31 9 3.3 7 3.29 6 3.28 3.27 3 3.26 = 3.3V 3.2 - -2 2 7 1 12 1 Temperature ( C) 1 = 3.3V - -2 2 7 1 12 1 Temperature ( C) 2 2 1 Dropout Voltage vs. Load Current 12 C 2 C 6 Dropout Voltage vs. Load Current 12 C 2 C 1 - C 3 2 - C RT9167 =.V..1.1.2.2.3 Load Current (A) 1 = 3.3V..1.1.2.2.3.3... Load Current (A) 7 Current Limit vs. Temperature 9 Current Limit vs. Temperature 6 8 6 RT9167 3 =.V 3 - -2 2 7 1 12 Temperature ( C) 7 6 3 = 3.3V 2 - -2 2 7 1 12 Temperature ( C)

6 2-2 C IN = 1uF COUT = 1uF C = 1nF Load Transient Response V IN = V = 3.V 6 2-2 Load Transient Response CIN = 1uF COUT =.7uF C = 1nF = V = 3.V Load Current (ma) 1 Load Current (ma) 1 - - Time (us/div) Time (us/div) Input Voltage Deviation (V) 1 1 - = 3.V COUT = 1uF C = 1nF Line Transient Response Loading = 1mA Input Voltage Deviation (V) 1 1 - = 3.V COUT = 1uF C = 1nF Line Transient Response Loading = ma Time (1ms/Div) Time (1ms/Div) Line Transient Response Line Transient Response 1 1 - = 3.V COUT =.7uF C = 1nF Loading = 1mA 6 2-2 = 3.V COUT =.7uF C = 1nF Loading = ma Input Voltage Deviation (V) Input Voltage Deviation (V) Time (us/div) Time (us/div)

7 PSRR 6 3 2 1 = 3.3V, ILOAD = 1mA COUT =.7uF, C = 1nF 1 1 1 1 1 1K 1 1K 1 1K 1 1M Frequency (khz) 6

Application Information Capacitor Selection and Regulator Stability Like any low-dropout regulator, the external capacitors used with the RT9167/A must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1µF on the RT9167/A input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than." from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RT9167/A is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1µF with ESR is > mω on the RT9167/A output ensures stability. The RT9167/A still works well with output capacitor of other types due to the wide stable ESR range. Figure 1. shows the curves of allowable ESR range as a function of load current for various output voltages and capacitor values. Output capacitor of larger capacitance can reduce noise and improve loadtransient response, stability, and PSRR. The output Region of Stable C OUT ESR vs. Load Current 1. OUT Unstable Region COUT = 1uF 1. Stable Region 1.1.1.1 Unstable Region capacitor should be located not more than." from the V OUT pin of the RT9167/A and returned to a clean analog ground. Note that some ceramic dielectrics exhibit large capacitance and ESR variation with temperature. It may be necessary to use 2.2µF or more to ensure stability at temperatures below -1 C in this case. Also, tantalum capacitors, 2.2µF or more may be needed to maintain capacitance and ESR in the stable region for strict application environment. Tantalum capacitors maybe suffer failure due to surge current when it is connected to a low-impedance source of power (like a battery or very large capacitor). If a tantalum capacitor is used at the input, it must be guaranteed to have a surge current rating sufficient for the application by the manufacture. Use a 1nF bypass capacitor at for low output voltage noise. The capacitor, in conjunction with an internal 2KΩ resistor, which connects bypass pin and the band-gap reference, creates an 8Hz low-pass filter for noise reduction. Increasing the capacitance will slightly decrease the output noise, but increase the start-up time. The capacitor connected to the bypass pin for noise reduction must have very low leakage. This capacitor leakage current causes the output voltage to decline by a proportional amount to the current due to the voltage drop on the internal 2KΩ resistor. Figure 2 shows the power on response. Voltage Voltage (.V (.V/Div) / DIV) C = = 1nF 1nF C = = 1nF.1 1 1 2 2 3 Load Current (ma) Figure 1 V OUT = =3.V. 1. 1. Time (ms) Figure 2 7

Load-Transient Considerations The RT9167/A load-transient response graphs (see Typical Operating Characteristics) show two components of the output response: a DC shift from the output impedance due to the load current change, and the transient response. The DC shift is quite small due to the excellent load regulation of the IC. Typical output voltage transient spike for a step change in the load current from ma to ma is tens mv, depending on the ESR of the output capacitor. Increasing the output capacitor's value and decreasing the ESR attenuates the overshoot. Shutdown Input Operation The RT9167/A is shutdown by pulling the input low, and turned on by driving the input high. If this feature is not to be used, the input should be tied to to keep the regulator on at all times (the input must not be left floating). To ensure proper operation, the signal source used to drive the input must be able to swing above and below the specified turn-on/turn-off voltage thresholds which guarantee an ON or OFF state (see Electrical Characteristics). The ON/OFF signal may come from either CMOS output, or an open-collector output with pullup resistor to the RT9167/A input voltage or another logic supply. The high-level voltage may exceed the RT9167/A input voltage, but must remain within the absolute maximum ratings for the pin. Input-Output (Dropout) Voltage A regulator's minimum input-output voltage differential (or dropout voltage) determines the lowest usable supply voltage. In battery-powered systems, this will determine the useful end-of-life battery voltage. Because the RT9167/ A uses a P-channel MOSFET pass transistor, the dropout voltage is a function of drain-to-source on-resistance [R DS(ON) ] multiplied by the load current. Reverse Current Path The power transistor used in the RT9167/A has an inherent diode connected between the regulator input and output (see Figure 3). If the output is forced above the input by more than a diode-drop, this diode will become forward biased and current will flow from the V OUT terminal to V IN. This diode will also be turned on by abruptly stepping the input voltage to a value below the output voltage. To prevent regulator mis-operation, a Schottky diode should be used in any applications where input/output voltage conditions can cause the internal diode to be turned on (see Figure ). As shown, the Schottky diode is connected in parallel with the internal parasitic diode and prevents it from being turned on by limiting the voltage drop across it to about.3v. < 1 ma to prevent damage to the part. Internal P-Channel Pass Transistor The RT9167/A features a typical 1.1Ω P-channel MOSFET pass transistor. It provides several advantages over similar designs using PNP pass transistors, including longer battery life. The P-channel MOSFET requires no base drive, which reduces quiescent current considerably. PNPbased regulators waste considerable current in dropout when the pass transistor saturates. They also use high base-drive currents under large loads. The RT9167/A does not suffer from these problems and consume only 8µA of quiescent current whether in dropout, light-load, or heavyload applications. Figure 3 Figure 8

Operating Region and Power Dissipation The maximum power dissipation of RT9167/A depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The power dissipation across the device is P = I OUT (V IN - ). The maximum power dissipation is: PMAX = (T J - TA ) /θ JA where T J - TA is the temperature difference between the RT9167/A die junction and the surrounding environment, θ JA is the thermal resistance from the junction to the surrounding environment. The pin of the RT9167/A performs the dual function of providing an electrical connection to ground and channeling heat away. Connect the pin to ground using a large pad or ground plane. Current Limit and Thermal Protection T9167 includes a current limit which monitors and controls the pass transistor's gate voltage limiting the output current to 3mA Typ. (7mA Typ. for ). Thermaloverload protection limits total power dissipation in the RT9167/A. When the junction temperature exceeds T J = +1 C, the thermal sensor signals the shutdown logic turning off the pass transistor and allowing the IC to cool. The thermal sensor will turn the pass transistor on again after the IC's junction temperature cools by 1 C, resulting in a pulsed output during continuous thermaloverload conditions. Thermal-overloaded protection is designed to protect the RT9167/A in the event of fault conditions. Do not exceed the absolute maximum junctiontemperature rating of T J = +1 C for continuous operation. The output can be shorted to ground for an indefinite amount of time without damaging the part by cooperation of current limit and thermal protection. 9

Outline Dimension D H L C B b A A1 e Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A.889 1.29.3.1 A1..12..6 B 1.397 1.83..71 b.36.9.1.22 C 2.91 2.997.12.118 D 2.692 3.99.16.122 e.838 1.1.33.1 H.8.2.3.1 L.3.61.12.2 SOT- 2 Surface Mount Package 1

A H M J B F I C D Symbol Dimensions In Dimensions In Inches Min Max Min Max A.81..189.197 B 3.81 3.988.1.17 C 1.36 1.73.3.69 D.33.8.13.2 F 1.19 1.36.7.3 H.178.2.7.1 I.12.2..1 J.791 6.198.228.2 M.6 1.27.16. 8-Lead SOP Plastic Package RICHTEK TECHNOLOGY CORP. Headquarter F, No. 2, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)26789 Fax: (8863)26611 RICHTEK TECHNOLOGY CORP. Taipei Office (Marketing) 8F-1, No. 137, Lane 23, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)8919166 Fax: (8862)891916 Email: marketing@richtek.com 11