New type ADC using PWM intermediary conversion

Similar documents
Module -18 Flip flops

Improved digital phase measurement

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

LINEAR IC APPLICATIONS

P a g e 1. Introduction

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

EEE312: Electrical measurement & instrumentation

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

CHAPTER 6 DIGITAL INSTRUMENTS

LABORATORY EXPERIMENTS DIGITAL COMMUNICATION

Electronic PRINCIPLES

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

IES Digital Mock Test

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

Current-mode PWM controller

CHAPTER ELEVEN - Interfacing With the Analog World

Concepts to be Reviewed

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

Fig 1: The symbol for a comparator

ALD500RAU/ALD500RA/ALD500R PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE

Lab 8 D/A Conversion and Waveform Generation Lab Time: 9-12pm Wednesday Lab Partner: Chih-Chieh Wang (Dennis) EE145M Station 13

CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES

6-Bit A/D converter (parallel outputs)

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

Chlorophyll a/b-chlorophyll a sensor for the Biophysical Oceanographic Sensor Array

PRECISION INTEGRATING ANALOG PROCESSOR

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

Lab 6: Exploring the Servomotor Controller Circuit

University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

10. Chapter: A/D and D/A converter principles

Electronic Instrumentation

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Chapter 2 Signal Conditioning, Propagation, and Conversion

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

ASTABLE MULTIVIBRATOR

EE 435 Switched Capacitor Amplifiers and Filters. Lab 7 Spring 2014 R 2 V OUT V IN. (a) (b)

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

Lab Exercise 6: Digital/Analog conversion

ADC Bit µp Compatible A/D Converter

ML4818 Phase Modulation/Soft Switching Controller

Publication II by authors

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2

DS1267 Dual Digital Potentiometer Chip

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Analytical Chemistry II

Chapter 10 Adaptive Delta Demodulator

ADC Bit A/D Converter

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Advanced Regulating Pulse Width Modulators

Chapter 2 Analog-to-Digital Conversion...

State Machine Oscillators

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

PC-based controller for Mechatronics System

4 x 10 bit Free Run A/D 4 x Hi Comparator 4 x Low Comparator IRQ on Compare MX839. C-BUS Interface & Control Logic

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

Testing and Stabilizing Feedback Loops in Today s Power Supplies

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES

For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2

HIGH FREQUENCY WAVEFORM GENERATOR. Author: Carlos Rodríguez Hernández

Universal Input Switchmode Controller

Design and Fabrication of High Frequency Linear Function Generator with Digital Frequency Counter using MAX038 and a PIC microcontroller

Homework Assignment 03

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers

PreLab 6 PWM Design for H-bridge Driver (due Oct 23)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

10-Bit µp-compatible D/A converter

Massachusetts Institute of Technology MIT

ISSN:

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28

16.2 DIGITAL-TO-ANALOG CONVERSION

Experiment # (3) PCM Modulator

Lab Exercise 9: Stepper and Servo Motors

Function Generator Op-amp Summing Circuits Pulse Width Modulation LM311 Comparator

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT, 250KSPS ADC

Chapter 13: Comparators

Lab 8: SWITCHED CAPACITOR CIRCUITS

Electronics II Physics 3620 / 6620

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Spectrum analyzer for frequency bands of 8-12, and MHz

St.MARTIN S ENGINEERING COLLEGE

Digital Controller Chip Set for Isolated DC Power Supplies

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs)

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018

Analog to digital and digital to analog converters

Assoc. Prof. Dr. Burak Kelleci

Model 305 Synchronous Countdown System

16-Bit ANALOG-TO-DIGITAL CONVERTER

Implementation of a quasi-digital ADC on PLD

Software Programmable Gain Amplifier AD526

A-D and D-A Converters

Transcription:

ew type ADC using PW intermediary conversion Cristian Zet 1, Cătălin Damian 1, Cristian Foşalău 1 1 Technical University G. Asachi, Bd. D. angeron, 53, 700050, Iasi, ROAIA, phone:+40 232 278683, fa: +40 232 237627, email: czet@ee.tuiasi.ro, cdamian@ee.tuiasi.ro, cfosalau@ee.tuiasi.ro Abstract The paper presents a new ADC type that uses an intermediary conversion in PW signal. The signal is compared with a triangular wave. The pulse width at comparator s output results proportional with the input voltage. Using a simple counter or a frequency-meter like circuit, it is converted into digital words. This is not a very fast converter (up to 10kS/s) but it is easy to build and it asks reduced costs to epand to multiple simultaneous sampling. This design is aimed for FPGAs, having outside it just a comparator per channel. Hardware signal processing is available immediately in the FPGA. Resolution and accuracy can go as far as 12, 14 or 16 bits. The converter presented in the following is 12 bits resolution and measure voltages from -2 V to 2 V. Static errors are also presented. I. Introduction Applications as electrical energy or electrical power measurement ask for 2 or 6 simultaneous sampling ADC and signal processing. Usually such circuits (Atmel, Analog Devices, Sames) are either epensive or hard to obtain in small quantities. ost dedicated circuits do not give all the necessary quantities. Also for new developments, dedicated circuits can not be used. In this case, for each channel, the developer must use one ADC and more all must be synchronized. The present design is dedicated for replacing such circuits in power and energy measurements in mono or triphase circuits and to offer further development possibilities. Using the same triangular wave and two ore more comparators synchronous PW signals will be obtained [1]. easuring the high states for the PW signals gives simultaneous results as samples values. The result is not really the value in the sampling moment, but an integral along a small period around the sampling moment. II. Theoretical background As mentioned above, the main idea for this A/D converter is to convert first the input signal into a PW signal. This can be achieved with a simple comparator and a triangular signal generator as shown in Figure 1. The clock signal coming from the oscillator O is divided with 2 n, where n is the number of bits of the TWG FD O clk - U C + PW P CK R Qn-1 Q0 n Dn-1 D0 Qn-1 Q0 LD n D n-1 D 0 Reset Load CL EOC ADC i Figure 1. The ADC block diagram converter, with a frequency divider (FD). The divided signal is used to generate the triangular signal (TWG). This is used to be compared with the input signal in order to obtain the PW signal. As long the input signal is under the triangular one, the output of the comparator is in low state, and it stays in high state if it is above. The PW signal is the gate signal for, while the clock is on the other input of

the AD gate (P). As long as the comparator output is in high state, the clock signal will pass the gate and the counter () will count them. At the end of the highs state of the PW signal the total number of clock periods counted by the counter represents the conversion result. On the basis of clock and PW signals, the control logic block (CL) generates two signals: Load signal for storing data in the memory latch () and Reset signal for clearing the counter for the net measurement. The "sampling rate" is given by the frequency of the triangle wave signal. Knowing the period and the amplitude of the triangular signal and clock period, the high state period of the PW signal can be determined. The duty cycle of the PW signal can be computed as A + U T = / 2 T U = TW T + 1 (1) 2 A TTW / 2 2 A where: A is triangle signal amplitude, U is the unknown input voltage, T TW is the period of triangular signal, T is period of the high state of the PW signal. If we replace in the above equation T TW =2 n *T 0 with T 0 the period of the clock signal and n the number of bits, we obtain: n 2 T0 U T = + 1 (2) 2 A The total number of counts stored after T is : T (3) = T 0 From (2) and (3) we get: = n U + 2 1 1 (4) A Equation (4) shows that the result is in displaced binary code. This means for an input voltage equal to -A we get 0, for 0 we get 2 n-1 and for A we get 2 n. Conversions in other codes can be performed inside FPGA. The waveforms associated to the proposed converter are presented in Figure 2. While the input voltage is 0V, the duty factor of the PW is 0.5, and it is going higher or lower if the input voltage is greater or respectively lower than 0. A U TW U 0 -A U PW Clock pulses at the counter input Load Reset Figure 2 The waveforms associated to the ADC Usually, for counter like circuits, the counting error occurs. This means a difference of 1 count between successive measurements and it is generated by the fact that the high frequency clock coming from the oscillator is not synchronous with the gate signal. In this case this error does not influence the result while the triangle wave is synchronized with the high frequency clock. The etension of this converter for multiple channels measurements is simple, because we need only one more comparator per channel. Of course the digital part has to be multiplied with the number of channels too, but the area taken is of about 42 logic cells while FPGAs goes from 1k logic cells up. Keeping outside the FPGA just the comparators and the triangle waveform generator as analogic blocks, the multiple channels ADC looks like in Figure 3.

CL ADC 1 FPGA U 1 C1 P1 CL ADC 2 U 2 C2 P2 Interface Results CL ADC 3 U 3 C3 P3 DF TWG O Fig. 3 The multiple channels ADC block diagram III. Eperimental realization of the ADC Following the block diagram in Figure 1, an eperimental ADC has been realized. Far from theory, few problems have to be solved, problems that will be discussed in the following. The most important thing that contributes to the global accuracy is the quality of the triangular wave signal. Amplitude and linearity are essentials for the full scale error and for the DL error. Starting from a rectangular waveform it is easy to obtain a triangular wave using an integrator. For high linearity the operational amplifier must have small input currents and the capacitor must have small leakage currents. If no feedback resistor is present, the DC bias point will not be fied and the output will go into saturation or will have an offset. A DC negative feedback must be introduced [2], but in order to keep the triangle quality this must be added on the non-inverting input, as shown in Figure 4. R 5 R 6 V REF -V REF R 3 Q 2 R 4 1/4 LT1058 C 1 V TTL R 1 R 2 BFT92 R 7 1/4 LT1058 V TW Q 1 BFP91 R 8 R 9 R 10 D C 2 1/4 LT1058 Figure 4. The triangle wave generator Another problem is related to the triangle amplitude. It decides the scale error, and it acts as reference voltage for this type of ADC. The operational amplifier saturation voltages will vary with the temperature and with the supply voltage. On the other hand the square wave coming from the frequency divider is unipolar. Thus a level shifter has been added before the integrator as shown in Figure 4. Because the fall and the rise times must be shorter than a clock period, fast transistors were used (BFP91 and BFT92). For operational amplifier LTC1058 has been chosen [3]. It has 4 stages per package, very small offset (180μV), low input currents (50pA), and high bandwidth (5Hz). The comparator is a fast one (XL1016) from aim [4]. The propagation delay is about 10ns, below the clock period, it has TTL outputs and ±5V power supplies. For offset compensation a trim circuit has been added. The digital part of the ADC (figure 5) has been implemented in Altera Fle10k20 with a clock oscillator of 25Hz. For 12 bits resolution, the maimum "sampling" frequency will be around 6KHz. For 50Hz power analyzer, the ADC will supply about 120 samples per period. The main counter is

count12b, a 12 bit binary counter. The clk input is the 25Hz clock signal and PW is the PW signal input. The control logic block (ControlLogic) generates, on the basis of PW and clk the two command signals (Reset and Load). The counter content is transferred into the output buffer on the rising edge of the load signal. Data are available on parallel format, either on the falling edge of load or on the logic 1 state of reset. The waveform associated to this circuit can be observed in Figure 2. Fig. 5. The digital part of the ADC IV. Eperimental static testing For static testing, the setup in Figure 6 has been realized. The ADC has been completed with a parallel interface for communication via LPT. The input signal was generated with a Sony-Tektroni AFG310 arbitrary function generator [5] and as reference a Keithley 2000 multimeter [6] have been used. The setup was controlled via GPIB bus with a LabView program. ADC under test Sony Tektroni Generator Keithley ultimeter Parallel BUS PC DC test signal LPT port G P I B Figure 6. The electronic setup The input DC voltage has been varied from -2V to +2V and the ADC and Keithley multimeter were recorded. From these data absolute error, IL and DL were etracted [7]. They are presented in Fig. 7. a, b, c. As it can be seen, the total absolute error is located between -3 LSB and +3 LSB. The most important contribution to this is the IL, error that is bounded between 1LSB and -2 LSB. The DL error is good enough (maimum 1LSB) being sized in -0.5LSB to +0.5 LSB interval. The ADC has been realized with available components. Better performances can be obtained using better components and a unitary construction of the ADC. The intention of this paper was just to prove the method and to show its advantages. V. Conclusions The paper was intended to show a new approach for building a cost effective ADC for low frequencies. The A/D conversion uses an intermediary conversion into PW signal, which can be considered as conversion in quantity time. Each of the PW states (high or low) carries information about the input signal. Choosing high or low state, the output will be in displaced binary code or respectively in inverted displaced binary code. The construction looks complicated at first look, because it contains an analog comparator, a triangle wave generator, a digital frequency-meter, a voltage reference and an oscillator. The main advantage of such ADC is the etension to multiple simultaneous sampling. This can be achieved by adding a comparator and a frequency-meter per channel. If the ADC is based on FPGA, the etension means just an etra comparator for every channel. Eperimental ADC using this method was realized and tested. Total errors distribution is located in ±3LSB domain for 12 bits resolution and ±2V full scale.

3 2 Absolute Error - LSB 1 0-1 -2 IL - LSB -3-2 -1.5-1 -0.5 0 0.5 1 1.5 2 2.50 2.00 1.50 1.00 0.50 0.00-0.50-1.00-1.50-2.00-2.50 1.20 Input - Volts a) 0 512 1024 1536 2048 2560 3072 3584 4096 code b) 0.80 DL - LSB 0.40 0.00-0.40-0.80-1.20 0 512 1024 1536 2048 2560 3072 3584 4096 CODE c) Fig. 7. The eperimental static errors of the ADC Another possible application is for building a cheap ADC in a microcontroller based system, where just an analog comparator is available. Triangle wave can be generated with a PW output, and the frequency-meter can be implemented with one timer-counter available on chip. References [1] D. Grahame Holmes, Thomas A. Lipo, Pulse Width odulation for Power Converters: Principles and Practice, Wiley-IEEE Press, October 2003, p. 95. [2] C. Kitchin, L. Counts, A Designer s Guide to Instrumentation Amplifiers 2 nd Edition, Analog Devices, 2004, p. 7.1. [3] ****, LT1057/LT1058 Dual and Quad, JFET Input Precision High Speed Op Amps Datasheet, Linear Technology Corporation, LT 1205 Rev B, 1989. [4] ****, Ultra-Fast Precision TTL Comparator XL1016, Rev 3, aim Integrated Products, 2003, http://pdfserv.maim-ic.com/en/ds/xl1016.pdf. [5] ****, odel 2000 ultimeter User anual, Keithley Instruments Inc, arch 1997, p. 5.3.

[6] ****, AFG310 and AFG320 Arbitrary Function Generator User anual, SOY/Tektroni Corp., 1999, p. 4.1. [7] Walt Kester, Analog-digital conversion, Analog Devices, arch 2004, p.5-27.