LLAM Series 900/1060/1060E/1550/1550E Si and InGaAs Low-Light Analog APD Receiver Modules (LLAM)

Similar documents
C30659 Series 900/1060/1550/1550E Si and InGaAs APD Preamplifier Modules

C30954EH, C30955EH and C30956EH Series Long Wavelength Enhanced Silicon Avalanche Photodiodes

C30807EH, C30808EH, C30822EH, C30809EH and C30810EH Types N-type Silicon PIN Photodetectors

C30884EH Silicon Avalanche Photodiode With Very High Modulation Capability

C306XXL Series High Speed Ceramic Surface Mount InGaAs PIN Photodiodes

Coherent InGaAs PIN balanced receiver module

C30617 and C30618 Series High Speed InGaAs Pin Photodiodes

DATASHEET Photon Detection. Key Features

Table 1. Mechanical and Optical Characteristics C30724EH C30724EH-2 C30724PH Unit Shape Circular Circular Circular Useful Area mm

C30737 Array Series Silicon Avalanche Photodiode Arrays (APD Arrays) for LiDAR, range finding and laser meters

Surface Mount 905 nm Pulsed Semiconductor Laser 4-channel Array High Power Laser-Diode Family for LiDAR and Range Finding

Silicon Avalanche Photodiodes (APDs) for range finding and laser meters plastic and leadless ceramic carrier packages

Surface Mount 905 nm Pulsed Semiconductor Lasers High Power Laser-Diode Family for Commercial Range Finding

Table 1. Package and Chip Dimensions Parameter Measurement Unit Package Size 8.50 x 8.00 x 1.55 mm Chip size 6.5 x 6.5 mm Active area 5.6 x 5.6 mm Tab

PGEW Series of Single- and Multi-epi 905 nm Pulsed Semiconductor Lasers Low-Cost High-Power Laser-Diode Family for Commercial Range Finding

Long Wavelength Enhanced Silicon APD C30954EH, C30955EH and C30956EH Series

C30902 and C30921 Series High-speed solid state detectors for low light level applications

Table 1 Specifications 22 ºC, unless otherwise indicated Parameter Min Typ Max Unit Supply @+30V Maximum power consumption

Table of Contents Table 1. Electrical Characteristics 3 Optical Characteristics 4 Maximum Ratings, Absolute-Maximum Values (All Types) 4 - TC

Silicon Avalanche Photodiodes C30902 Series

SPCM-AQRH Single Photon Counting Module

HY-3002/5948A-Replacement Hydrogen Filled Triode Thyratron

SPCM-AQRH Single Photon Counting Module

A-CUBE-Series High Sensitivity APD Detector Modules

HY-53 Hydrogen Tetrode Thyratron

Thermopile Sensor TPS 232 / 3214

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical

ACULED DYO TM Design-Your-Own Guide

FX-4400 High-Output Xenon Flashlamps

SPCM-EDU CD3375. Customer: Members of ALPhA (Advanced Laboratory Physics Association) Educational Use Single Photon Counting Module SPCM-EDU CD3375

OTFI 0285 XLM Plus High CRI LED Fiber Optic Light Module with Electronics Key Features

SPCM-AQRH Single Photon Counting Module

H2 / H3 / H4 / H5 Series Silicon and InGaAs-APD Receiver

Pulsed 10xx nm High Power Laser Diode Module

Pulsed 1064nm / 1030nm Narrow Bandwidth FBG High Power Laser Diode Module

905 nm Multi-Quantum Well Strained InGaAs Pulsed Laser Diodes PGA Series

High-Speed InGaAs PIN C30616, C30637, C30617, C30618 InGaAs PIN Photodiodes

InGaAs Avalanche Photodiode. IAG-Series

BPW41N. Silicon PIN Photodiode. Vishay Semiconductors

BPW46L. Silicon PIN Photodiode. Vishay Semiconductors

BPW41N. Silicon PIN Photodiode. Vishay Semiconductors

SPCM-AQRH Single Photon Counting Module

Silicon Avalanche Photodiode SAR-/SARP-Series

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

10Gb/s Coplanar PIN Preamp Receiver PT10GC

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

photodiodes Description PerkinElmer Optoelectronics offers a broad array of Silicon and InGaAs PIN and APDs.

High-Speed Photoreceiver with Si PIN Photodiode

400 MHz Photoreceiver with Si PIN Photodiode

Silicon PIN Photodiode

BP104. Silicon PIN Photodiode. Vishay Semiconductors

Thermopile Detector TPD 2T 0625 G7.2 G20 / 3142 Revision - Date: 2011/12/01

200 MHz Variable Gain Photoreceiver

First Sensor Evaluation Board Data Sheet Part Description MOD Order #

Silicon PIN Photodiode

DR-AN-40-MO 40 GHz Analog Medium Output Voltage Driver

Standard InGaAs Photodiodes IG17-Series

Great Britain: LASER COMPONENTS (UK) Ltd., Phone: , Fax: , France: LASER COMPONENTS

Silicon PIN Photodiode

GPD. Germanium Photodetectors. GPD Optoelectronics Corp. OPTOELECTRONICS CORP. Small & Large Area pn, pin detectors Two-color detectors

Extended InGaAs Photodiodes IG22-Series

S186P. Silicon PIN Photodiode. Vishay Semiconductors

Silicon PIN Photodiode

Silicon PIN Photodiode

SPCM-AQ4C Single Photon Counting Module Array

400 MHz Photoreceiver with InGaAs PIN Photodiode

200 MHz Photoreceiver with Si PIN Photodiode

First Sensor PIN PD Data Sheet Part Description PC5-7 TO Order #

BPV23NF(L) Silicon PIN Photodiode. Vishay Semiconductors

BPV22NF(L) Silicon PIN Photodiode. Vishay Semiconductors

Silicon PIN Photodiode, RoHS Compliant

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE

P-CUBE-Series High Sensitivity PIN Detector Modules

HFD Fiber Optic LAN Components 1.25Gbps PIN Plus Preamplifier with RSSI

Silicon PIN Photodiode

BPV10NF. High Speed Silicon PIN Photodiode. Vishay Semiconductors

Silicon PIN Photodiode

Silicon PIN Photodiode, RoHS Compliant

Variable Gain Photoreceiver - Fast Optical Power Meter

Silicon PIN Photodiode, RoHS Compliant

Silicon PIN Photodiode

2.5 Gb/s Buried Het 4x100GHz Tunable Laser with Etalon Stabilisation and extended reach option LC25ET

980nm Pump Laser Module - Grating Stabilized, 400mW LC95

Silicon PIN Photodiode, RoHS Compliant

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

E2560/E2580-Type 10 Gbits/s EML Modules

ULTRA High Power 980nm Pump Laser Module - Grating Stabilized, 750mW LC96U*

Figure Responsivity (A/W) Figure E E-09.

Silicon PIN Photodiode

Infrared Emitting Diode, RoHS Compliant, 950 nm, GaAs

80-MHz Balanced Photoreceivers Model 18X7

80-MHz Balanced Photoreceivers Model 18X7

Silicon PIN Photodiode, RoHS Compliant

VITESSE SEMICONDUCTOR CORPORATION. Bandwidth (MHz) VSC

Infrared Emitting Diode, 950 nm, GaAs

Ultra High Power 980nm Pump Laser Module - Grating Stabilized, 750mW

Infrared Emitting Diode, RoHS Compliant, 950 nm, GaAs

DR-PL-20-MO Pulse Medium Output Voltage Driver Module

High Precision 10 V IC Reference AD581

DC to VHF DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE

Transcription:

DATASHEET Photon Detection LLAM Series 900/60/60E/15/15E Excelitas LLAM-15E InGaAs APD Preamplifier Modules exhibit enhanced damage threshold and greater resilience when exposed to higher optical power densities. Excelitas Technologies LLAM series of Silicon and InGaAs avalanche photodiodes (APD) receiver modules feature an APD, thermoelectric cooler (TEC) and a hybrid, all in the same hermetically-sealed modified 12-lead TO-66 flange package for increased heat sinking. The use of a TEC eases the burden on the APD bias control to insure constant responsivity over a 5⁰C to 40⁰C ambient temperature range. The LLAM series modules are specifically designed for the detection of high-speed, low-light analog signals. The Si APDs used in these devices are the same as used in Excelitas C30902EH and C30954EH products, while the InGaAs APDs are used in the C30645EH and C30662EH products. These detectors provide very good response between 830 and 15 nm and very fast rise- and fall-times at all wavelengths. Just like the C30659 series, the preamplifier section of the LLAM module uses a very low noise GaAs FET front end designed to operate at higher transimpedance than Excelitas regular C309 Series. The LLAM is an inverting amplifier design with an emitter follower used as an output buffer stage. To obtain the wideband characteristics, the output of these devices should be capacitively- or AC-coupled to a Ω termination. The module must not be DC-coupled to loads of less than 2 kω. For field use, it is recommended that a temperature-compensated H supply be employed to maintain a constant responsivity over temperature. Excelitas InGaAs LLAM-60E and -15E Preamplifier Modules, are designed to exhibit higher damage thresholds, thus providing greater resilience when exposed to high optical power densities. The LLAM series modules are offered as standard, RoHS-compliant, commercial offthe-shelf (COTS) products. Excelitas offers customized modules tailored for your specific needs; modifications include bandwidth and gain optimization, use of different APDs, FC-connectorized packaging. Key Features System bandwidth of MHz and 200MHz Ultra low noise equivalent power (NEP) Spectral response range: Si APD: 400 to 1 nm InGaAs APD: 1 to 1700 nm Typical power consumption: 1 mw (without TEC powered on) ±5 amplifier operating voltages Ω AC load capability (AC-Coupled) Hermetically-sealed TO-66 flange package for additional heat sinking High reliability Light entry angle, over 130 Model 60E and 15E exhibits enhanced damage threshold RoHS-compliant Available in both COTS and custom variations Applications LIDAR Range finding Laser designation Confocal microscopy High-speed, extreme low-light detection Distributed temperature sensing (DTS) Analytical instrumentation High-speed, free-space optical communication www.excelitas.com LLAM Series-Rev.1.5-2016.11 Page 1 of 9

LLAM Series 900/60/60E/15/15E Table 1. Performance Specifications LLAM 900/60(E) Models (900 nm and YAG-enhanced Si APD) Test conditions: Case temperature = 22 C, amp = ±5, H = op (see Note 1), R L = Ω AC coupled and TEC off Detector Type LLAM-900-R5BH (C30902EH APD) LLAM-60-R8BH LLAM-60E-R8BH (C30954EH APD) Parameter Min Typical Max Min Typical Max Units Photosensitive Area Active diameter Active area Field of iew Nominal field of view α (see Figure 8) Nominal field of view α (see Figure 8) www.excelitas.com Page 2 of 9 LLAM Series-Rev.1.5-2016.11 0.5 0.2 139 142 0.5 138 143 mm mm² Degrees System bandwidth, f-3db 175 200 175 200 MHz Temperature coefficient of op for constant gain 0.7 2.2 / C op for specified responsivity 180 Note 1 260 275 Note 1 435 Responsivity at 830 nm at 900 nm at 64 nm Rf (Internal feedback resistor) Noise equivalent power (NEP) (Note 2) Average from khz to f-3db, f = 1.0 Hz at 830 nm at 900 nm at 64 nm Output spectral noise voltage Averaged from khz to f-3db Output impedance 33 40 33 40 Ω Rise time, tr ( = 830, 900 and 64 nm) % to 90% points Fall time, tf ( = 830, 900 and 64 nm) 90% to % points 460 400 12 35 40 15 55 65 25 325 370 200 8.2 30 25 90 80 1 30 k/w k/w k/w kω fw/hz fw/hz fw/hz n/hz 2 2 ns 2 2 ns Recovery time after overload (Note 3) 1 1 ns Output voltage swing (1 kω load) (Note 4) 2 3 2 3 pp Output voltage swing ( Ω load) (Note 4) 0.7 0.9 0.7 0.9 pp DC output offset voltage -1 0.25 1-1 0.25 1 DC APD temperature (case at room temperature) - 85-85 ⁰C Thermistor value (Note 5) 5.1±5% 5.1±5% kω Positive supply current (+) 20 35 20 35 ma Negative supply current (-) 20 20 ma Notes: 1. A specific value of op within the specified range will be supplied with each device. 2. NEP is calculated as the output spectral noise voltage divided by the typical responsivity. 3. 0 dbm with 2ns pulses. 4. Pulsed operation, AC-coupled 5. The temperature of the thermistor in Kelvin can be calculated using β the following equation: T[K] =,where R is the ln(r/r ) measured thermistor resistance in Ω, β = 3200, R 0 = 5 Ω, T 0 = 298.15 K and r = R 0 e β T0 0.1113.

LLAM Series 900/60/60E/15/15E Table 2. Performance Specifications LLAM-15(E) Models (15 nm peak response InGaAs APD) Test conditions: Case temperature = 22 C, amp = ±5, H = op (see Note 1), R L = Ω AC coupled and TEC off Detector type LLAM-15-R2AH LLAM-15E-R2AH (C30662EH APD) LLAM-15-R08BH LLAM-15E-R08BH (C30645EH APD) Parameter Min Typical Max Min Typical Max Units Photosensitive Area Active diameter Active area Field of iew Nominal field of view α (see Figure 8) Nominal field of view α (see Figure 8) 0.2 0.03 140 141 0.08 0.005 140 141 mm mm² Degrees System bandwidth, f-3db 40 1 175 MHz Temperature coefficient of op for constant gain 0.2 0.2 / C op for specified responsivity 40 Note 1 70 40 Note 1 70 Responsivity at 1300 nm at 15 nm Rf (Internal feedback resistor) Noise equivalent power (NEP) (Note 2) Average from khz to f-3db, f = 1.0 Hz at 1300 nm at 15 nm Output spectral noise voltage Averaged from khz to f-3db Output impedance 33 40 33 40 Ω Rise time, tr ( = 1300 and 15 nm) % to 90% points Fall time, tf ( = 1300 and 15 nm) 90% to % points 300 340 68 1 130 45 180 160 55 80 90 15 2 220 20 375 330 30 k/w k/w kω fw/hz fw/hz n/hz 7 2 ns 7 2 ns Recovery time after overload (Note 3) 1 1 ns Output voltage swing (1 kω load) (Note 4) 2 3 2 3 pp Output voltage swing ( Ω load) (Note 4) 0.7 0.9 0.7 0.9 pp DC output offset voltage -1 0.25 1-1 0.25 1 DC APD temperature (case at room temperature) - 85-85 ⁰C Thermistor value (Note 5) 5.1±5% 5.1±5% kω Positive supply current (+) 20 35 20 35 ma Negative supply current (-) 20 20 ma Notes: 1. A specific value of op within the specified range will be supplied with each device. 2. NEP is calculated as the output spectral noise voltage divided by the typical responsivity. 3. 0 dbm with 2ns pulses. 4. Pulsed operation, AC-coupled 5. The temperature of the thermistor in Kelvin can be calculated using β the following equation: T[K] =,where R is the ln(r/r ) measured thermistor resistance in Ω, β = 3200, R 0 = 5 Ω, T 0 = 298.15 K and r = R 0 e β T0 0.1113. www.excelitas.com Page 3 of 9 LLAM Series-Rev.1.5-2016.11

LLAM Series 900/60/60E/15/15E Table 3. Absolute Maximum Ratings, Limiting alues Detector type LLAM-60(E)-R8BH (C30954EH) LLAM-900-R5BH (C30902EH) LLAM-15(E) Models (C30645EH) (C30662EH) Parameter Min Max Min Max Min Max Units Photodiode H bias voltage (Note 1) at TA = +70 C at TA = -40 C Incident radiant flux, ΦM, (Note 2) average (Note 3) peak (Note 4) peak (Note 5) Case temperature storage, Tstg operating, TA - -40 600 300 0.1 85 70 - -40 3 2 0.1 85 70 4 (for-15) 0 (for -15E) - -40 2 mw mw kw/cm² Preamplifier bias voltage ±4.5 ±5.5 ±4.5 ±5.5 ±4.5 ±5.5 Thermo-Electric Cooler (TEC) Qmax, heat-pumping capacity max, rated at 27⁰C Imax, rated at 27⁰C 0.9 1.8 0.9 1.8 0.9 1.8 W A Notes: 1. The operating voltage (op) must remain below the breakdown voltage (br), these values are worst-case estimates. H voltage current should be limited externally to less than 1mA. 2. As demonstrated in laboratory conditions. 3. Based on 0.5 W electrical power on the high voltage (H) supply. 4. Test with 30 ns pulse width. 5. Tested at 60 nm, ns pulse width and 1 khz pulse repetition rate. 85 70 C C Figure 1. Schematic Block Diagram LLAM Series www.excelitas.com Page 4 of 9 LLAM Series-Rev.1.5-2016.11

Responsivity [k/w] Responsivity [k/w] Responsivity [k/w] LLAM Series 900/60/60E/15/15E Figure 2. Typical Spectral Responsivity 0 4 400 3 300 2 200 LLAM-900-R5BH 1 LLAM-60/60E-R8BH LLAM-15/15E-R2AH 0 400 0 600 700 800 900 0 1 1200 1300 1400 10 1600 1700 1800 Wavelength [nm] 90 LLAM-15/15E-R08BH 80 70 60 40 30 20 0 800 900 0 1 1200 1300 1400 10 1600 1700 1800 Wavelength [nm] Figure 3. Typical Responsivity as a Function of Operating oltage LLAM-(900/60) Series 00 LLAM-900-R5BH LLAM-60/60E-R8BH 0 1 200 2 300 3 400 Operating oltage [] www.excelitas.com Page 5 of 9 LLAM Series-Rev.1.5-2016.11

Normalized output noise voltage Normalized frequency response [db] Responsivity [k/w] LLAM Series 900/60/60E/15/15E Figure 4. Typical Responsivity as a function of Operating oltage LLAM-(15/15E) Series 00 LLAM-15/15E-R2AH LLAM-15/15E-R08BH 0 15 20 25 30 35 40 45 55 Operating oltage [] Figure 5. Typical Noise and Frequency response curves 1.4 1.2 1 1 0-1 -2-3 0.6-4 0.4 0.2 MHz 200 MHz -5-6 -7 MHz 200 MHz 0 1 0 Frequency [MHz] -8 1 0 Frequency [MHz] Output voltage noise normalization is calculated using the following formula: n n, where normalize n average naverage Hz f3db 2 n khz f 3dB df www.excelitas.com Page 6 of 9 LLAM Series-Rev.1.5-2016.11

Responsivity (k/w) Responsivity (k/w) Responsivity (k/w) Responsivity (k/w) LLAM Series 900/60/60E/15/15E Figure 6. Typical variation of responsivity as a function of temperature LLAM-900-R5BH responsivity at 900 nm LLAM-60/60E-R8BH responsivity at 60 nm 0 0-20 C 0 C 23 C 45 C 1 175 200 225 2 op () -20 C 0 C 23 C 45 C 1 200 2 300 3 400 4 op () 0 LLAM-15/15E-R08BH responsivity at 15 nm 0 LLAM-15/15E-R2AH responsivity at 15 nm -20 C 0 C 23 C 45 C 25 30 35 40 45 55 60 op () -20 C 0 C 23 C 45 C 25 30 35 40 45 55 60 op () www.excelitas.com Page 7 of 9 LLAM Series-Rev.1.5-2016.11

LLAM Series 900/60/60E/15/15E Figure 7. Mechanical Characteristics LLAM Series reference dimensions shown in mm [inches] Figure 8. Approximate field of view LLAM Series For incident radiation at angles α/2, the photosensitive surface is totally illuminated. For incident radiation at angles > α/2, but α /2, the photosensitive surface is partially illuminated. www.excelitas.com Page 8 of 9 LLAM Series-Rev.1.5-2016.11

LLAM Series 900/60/60E/15/15E Table 4. Ordering Guide Model Nominal Wavelength Detector Detector Active Bandwidth Response Type Material Diameter LLAM-900-R5BH 200 MHz 900 nm (peak) C30902EH Silicon 0.5 mm LLAM-60-R8BH LLAM-60E-R8BH 64 nm (optimized) C30954EH mm LLAM-15-R2AH MHz 15 nm (peak) C30662EH InGaAs 0.2 mm LLAM-15E-R2AH LLAM-10-R08BH 175 MHz C30645EH 0.08 mm LLAM-15E-R08BH Comments Enhanced damage threshold Enhanced damage threshold Enhanced damage threshold RoHS Compliance The LLAM Series of APD Preamplifier Modules are designed and built to be fully compliant with the European Union Directive 2011/65/EU Restriction of the use of certain Hazardous Substances (RoHS) in Electrical and Electronic equipment. About Excelitas Technologies Excelitas Technologies is a global technology leader focused on delivering innovative, customized solutions to meet the lighting, detection and other high-performance technology needs of OEM customers. Excelitas has a long and rich history of serving our OEM customer base with optoelectronic sensors and modules for more than 45 years beginning with PerkinElmer, EG&G, and RCA. The constant throughout has been our innovation and commitment to delivering the highest quality solutions to our customers worldwide. From aerospace and defense to analytical instrumentation, clinical diagnostics, medical, industrial, and safety and security applications, Excelitas Technologies is committed to enabling our customers' success in their specialty end-markets. Excelitas Technologies has approximately 5,000 employees in North America, Europe and Asia, serving customers across the world. Excelitas Technologies 22001 Dumberry Road audreuil-dorion, Quebec Canada J7 8P7 Telephone: (+1) 4.424.3300 Toll-free: (+1) 800.775.6786 Fax: (+1) 4.424.3345 detection.na@excelitas.com Excelitas Technologies GmbH & Co. KG Wenzel-Jaksch-Str. 31 D-65199 Wiesbaden Germany Telephone: (+49) 611 492 430 Fax: (+49) 611 492 165 detection.europe@excelitas.com Excelitas Technologies International Sales Office Bat HTDS BP 246, 91882 Massy Cedex, France Telephone: +33 (1) 6486 2824 europedefense@excelitas.com Excelitas Technologies Singapore, Pte. Ltd. 8 Tractor Road Singapore 627969 Telephone: (+65) 6775 2022 (Main number) Telephone: (+65) 6770 4366 (Customer Service) Fax: (+65) 6778-1752 detection.asia@excelitas.com For a complete listing of our global offices, visit www.excelitas.com/locations 2013 Excelitas Technologies Corp. All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors. www.excelitas.com Page 9 of 9 LLAM Series-Rev.1.5-2016.11