Keysight Technologies Eye on ax: What it is and How to Overcome the Test Challenges it Creates

Similar documents
Keysight Technologies

Keysight Technologies Improving Test Efficiency of MEMS Electrostatic Actuators Using the E4980A Precision LCR Meter.

Keysight Technologies Improving the Test Efficiency of MEMS Capacitive Sensors Using the E4980A Precision LCR Meter.

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note

Keysight Technologies Migrating Balanced Measurements from the

Keysight Technologies Accurate NBTI Characterization Using Timing-on-the-fly Sampling Mode. Application Note

Keysight Technologies

Keysight Technologies N6850A Broadband Omnidirectional Antenna. Data Sheet

Keysight Technologies Overcoming LTE-A RF Test Challenges. Application Note

Keysight Technologies VSA Software for Simulation Environments BE/89601 BNE

Keysight Technologies 8490G Coaxial Attenuators. Technical Overview

Keysight E5063A ENA Vector Network Analyzer

Keysight Technologies 89601B-SSA/89601BN-SSA Spectrum Analysis VSA Software

Keysight Technologies Simultaneous Measurements with a Digital Multimeter

Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless

Keysight Technologies Measuring Low Current Consumption with a Digital Multimeter

Keysight Technologies N4985A System Amplifiers

Keysight Technologies Automated Receiver Sensitivity Measurements Using U8903B. Application Note

Keysight N9311X RF and Microwave Accessory Kit for Low-cost Handheld and Benchtop Solutions. Technical Overview

Keysight E5063A ENA Series Network Analyzer

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight Technologies N9310A RF Signal Generator

Keysight Technologies MATLAB Data Analysis Software Packages

Introduction. Part 1. Introduction...2

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief

Keysight 8474B/C/E Planar-Doped Barrier Diode Detectors 0.01 to 50 GHz. Data Sheet

Keysight Technologies FFT and Pulsed RF Measurements with 3000T X-Series Oscilloscopes. Application Note

Keysight HMMC-1002 DC 50 GHz Variable Attenuator

Keysight Technologies Making Field Effect Transistor Characterization Using SMU

Keysight Technologies How to Easily Create an Arbitrary Waveform Without Programming. Application Note

Keysight Technologies Isolating Problems and Optimizing Wireless Designs with Digital Demodulation and EVM

Keysight Technologies P9400A/C Solid State PIN Diode Transfer Switches

Keysight M9485A PXIe Multiport Vector Network Analyzer

Keysight Technologies Precise Low Resistance Measurements Using the B2961A and 34420A

Keysight Technologies 87405C 100 MHz to 18 GHz Preamplifier. Technical Overview

Keysight Technologies HMMC GHz High-Gain Amplifier

Keysight Technologies 423B, 8470B, 8472B, 8473B/C Low Barrier Schottky Diode Detectors

Keysight Technologies Using a Network and Impedance Analyzer to Evaluate MHz RFID Tags and Readers/Writers

Keysight Redefines 50 GHz Portability. Get a $30k Credit When You Move Up to FieldFox

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level

Keysight Technologies N4983A Multiplexer and Demultiplexer. Data Sheet

Keysight M940xA PXIe Optical Extenders for Instrumentation. Data Sheet

Keysight N8836A PAM-4 Measurement Application For Infiniium S-Series, 90000A, V-Series, X-Series, Q-Series, and Z-Series Oscilloscopes

Keysight Technologies N2792A/N2818A 200 MHz and N2793A/N2819A 800 MHz Differential Probes. Data Sheet

Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors. Demo Guide

Keysight Technologies Using a Scope s Segmented Memory to Capture Signals More Efficiently. Application Note

Keysight Technologies Measuring Group Delay of Frequency Converters with Embedded Local Oscillators. Application Note

Keysight Technologies Making Simpler DC Power Measurements with a Digital Multimeter

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Keysight Technologies USB Preamplifiers

Keysight DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option

Keysight Technologies Waveguide Power Sensors. Data Sheet

Keysight Technologies Make Better AC RMS Measurements with Your Digital Multimeter. Application Note

Keysight N9310A RF Signal Generator

Keysight Technologies Power of Impedance Analyzer

Keysight Technologies MEMS On-wafer Evaluation in Mass Production

Keysight Technologies Understanding the Importance of Maximum Power Point Tracking Efficiency for Solar Inverters.

Keysight Quickly Generate Power Transients for Testing Automotive Electronics. Application Note

Keysight Technologies VOR and ILS Radio Navigation Receiver Test Using Option 302 for Keysight Signal Sources. Application Note

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V

Keysight Technologies Achieving Accurate RF and Microwave Power Measurements for Satellite Thermal Vacuum Test. Application Note

Keysight Technologies Split Post Dielectric Resonators for Dielectric Measurements of Substrates. Application Note

Keysight Technologies Enhancing Measurement Performance for the Testing of Wideband MIMO Signals

Keysight Technologies Using an External Trigger to Generate Pulses with the B2960A

Keysight Technologies High Frequency Probing Solutions for Time and Frequency Domain Applications. Application Note

Keysight Technologies N9398C/F/G and N9399C/F DC Block. Technical Overview

Productivity and flexibility for A/D applications

Keysight Technologies Migrating from the 4268A/4288A Capacitance Meter to the E4981A Capacitance Meter. Technical Overview

Keysight Technologies InfiniiScan Event Identification Software

Keysight Technologies Satellite Signal Monitoring, Reference Solution

Keysight Technologies N6141A & W6141A EMI X-Series Measurement Application. Technical Overview

Keysight Technologies, Inc. UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer. Application Note

Keysight Technologies Maximizing the Life Span of Your Relays

Keysight Technologies Active Differential Probes U1818A 100 khz to 7 GHz U1818B 100 khz to 12 GHz. Technical Overview

Keysight N2806A Calibration Pulse Generator The world s fastest differential pulse generator. Data Sheet

Keysight Technologies Characterizing High-Speed Coherent Optical Transmission Systems

Keysight Technologies Accurate Evaluation of MEMS Piezoelectric Sensors and Actuators Using the E4990A Impedance Analyzer.

Keysight Technologies Solid State Switches. Application Note

Keysight Technologies Electronic Calibration (ECal) Modules for Vector Network Analyzers

Keysight N8803C CAN, LIN, FlexRay, and CAN-FD Protocol Triggering and Decode Software. Data Sheet

Keysight Technologies N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes. Data Sheet

Keysight Technologies NFA Noise Figure Analyzer. Configuration Guide

Keysight Technologies VSA Software

Keysight Technologies RF & Microwave Attenuators. Performance you can count on

Keysight Technologies Z9070B Wideband Signal Analysis Solution. Technical Overview

Keysight Technologies Phase Noise X-Series Measurement Application

Keysight U1882B Measurement Application for Infiniium Oscilloscopes. Data Sheet

Keysight Technologies PXI Vector Network Analyzer Series. Drive down the size of test

Keysight Technologies How to Read Your Power Supply s Data Sheet. Application Note

Keysight Technologies Test Case Manager N7649B

Keysight Technologies Accelerating the Testing of Phased-Array Antennas and Transmit/Receive Modules. Application Note

Keysight Technologies N2750A/51A/52A InfiniiMode Differential Active Probes. Data Sheet

Keysight Technologies UXG X-Series Agile Signal Generator, Modified Version N5191A

Keysight Technologies Automotive ECU Transient Testing Using Captured Power System Waveforms. Application Note

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Keysight Technologies Optimizing VNA Settings for Testing of LTE-A Wireless Components. Application Note

Keysight Technologies PNA Receiver Reduces Antenna/RCS Measurement Test Times

Keysight Technologies Signal Studio for DFS Radar Profiles N7607C

Keysight Technologies Achieving Accurate E-band Power Measurements with E8486A Waveguide Power Sensors. Application Note

Keysight Technologies N9398C/F/G and N9399C/F DC Block. Technical Overview

Transcription:

Keysight Technologies Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates White Paper Originally published in the Microwave Journal, May 2016. Authors: Michael Wohlert, Sang-Kyo Shin, and Xiang Feng, Keysight Technologies

Introduction Wireless access to data has become an everyday necessity for both consumers and enterprises. In the last 30 years alone, unfettered access to information has transformed entire industries, fueling growth, productivity and profits. WiFi technology, governed by the IEEE 802.11 standards body, has played a key role in this transformation, providing users with pervasive, low-cost access to high data rate wireless connectivity. The newest 802.11 standard, 802.11ax, is taking things one step further by promising to deliver that connectivity faster, over the 2.4 GHz or 5 GHz band by utilizing OFDM, up to 1024 QAM, and multi-user MIMO. While still in the early stages of development, the 802.11ax standard holds great promise, especially for dense deployments in both indoor and outdoor environments. Like any emerging standard; however, the new technologies it adopts present unique challenges when it comes to testing.

03 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper A Closer Look at 802.11ax To better understand 802.11ax, it s crucial to first take a step back and look at 802.11ac. The 802.11ac standard allows up to 4 spatial streams of data. The 802.11ax draft specification, available since January 2016, builds on 802.11ac by doubling the number of spatial streams and significantly improving the efficiency (and in turn the throughput) of those streams. 802.11ax, like 802.11ac, also operates in the 5-GHz band where there is more space for its 80-MHz and 160-MHz channels. What makes 802.11ax so appealing is its ability to dramatically increase throughput while improving power efficiency for mobile devices. And it s not just theoretical system-level throughput (e.g., the banner specification that each new technology touts) that s improved, but actual real-world throughput achieved by individual users in high-density scenarios, both indoors and outdoors, in the presence of interfering sources. Put simply, 802.11ax promises consumers a dramatically better user experience, in all possible scenarios. That s welcome news for emerging applications like interactive and high-definition video, which are often called on to work in challenging environments with a high density of WiFi users (e.g., stadiums and public transportation). To deliver on these objectives, 802.11ax must utilize a number of different technologies. While it s anticipated that the standard will be based around OFDM, some of the other technologies currently under consideration include: OFDMA, MU-MIMO and higher order modulation. OFDM is typically used for high data rate systems because of its resilience to channel irregularities (e.g., selective fading). In the case of 802.11ax, OFDM will need to be modified to have a reduced sub-carrier spacing (4x symbol length) and have more variable Cyclic Prefixes (CPs) to support different scenarios, especially long outdoor channels where the trade-off between efficiency and robustness becomes critical. Another technology under consideration for its ability to improve performance is Overlapping Basic Service Sets (OBSS) interference handling. OBSS techniques, which can take many forms and may include some variant of beamforming reception, are important due to the increasing number of Access Points (APs) being deployed. These deployments make spectrum management and interference mitigation from adjacent APs increasingly important and that s where OBSS techniques come in. These techniques, like OFDM, OFDMA, MU-MIMO, and higher order modulation will improve 802.11ax s spatial reuse and spectrum efficiency, enabling it to achieve high system performance. Beware: Challenges Ahead Like all emerging standards, 802.11ax s use of technologies like OFDM and interference handling techniques increase design complexity and create a number of new test challenges for the engineer. Some of those challenges arise when it comes to basic measurements, as shown in the Table, while others come from new test requirements. For example, while the transmitter tests and key receiver tests defined in the 802.11ax specification are carried over from 802.11ac, new tests for Multi-User (MU) transmission have been added. MU transmission is the one of most important new features in 802.11ax and relies on transmission accuracy and synchronization by STAs for effective operation. As a result, a number of new test requirements in support of MU transmission have been proposed.

04 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper Feature Description Test challenges Bands 2.4 GHz and 5 GHz Dual band Channel 20 MHz, 40 MHz, 80 MHz, bandwidth 160 MHz, 80+80 MHz Need to generate and analyze wide BW signals FFT size 256, 512, 1024, 2048 Smaller sub-carrier space (78.125 KHz). More sensitive to frequency and phase error and CFO impact. Modulation types Up to 1024QAM Need better EVM and better power amplifier linearity Spatial streams Max 8 More channels of signal generation and analysis, up to 8x8, and MIMO channel simulator needed. Multi-user OFDMA + MU-MIMO Test simultaneous transmission and receiving for multiple users and signal from each user would experience different impairments. Table 1. Even for basic measurements, there are test challenges that arise because of the new technologies being adopted in 802.11ax. Creating an indoor/outdoor channel model IEEE 802.11ax aims to enhance the throughput per station in both indoor and outdoor operations. Compared to indoor channels, outdoor channels typically experience larger delay spreads and more time variations. To account for this, the 3GPP ITU-R Urban Micro (UMi) and Urban Macro (UMa) channel models have been selected for use as the baseline for 802.11ax outdoor spatial channel models. However, an appropriate level of modification is necessary to allow these models to address the new specification. The ITU-R channel models, for example, need to be expanded to support 802.11ax s 160- MHz bandwidth. Once all of these modifications are made, they need to be modeled, resampled and interpolated into the required system bandwidth. Additionally, since path loss is an issue for 802.11ax, path loss models for both indoor and outdoor scenarios become critical. The TGn channel B and D model has been adopted for the indoor case, simulating wall and floor penetration, while outdoor scenarios will be based on the UMi path loss model. Narrowband interference One of the concerns for 802.11ax is narrowband interference, primarily caused by internal transmission signals or signals/harmonics generated from other devices falling into the same frequency band as the 802.11ax system. A number of new techniques are being employed on the receiver side to mitigate the harmful effects of this interference, for example, applying tone nulling after the Fast Fourier Transform (FFT) and notch filtering with CP/ZP-OFDM. Dual Sub-Carrier Modulation (DCM) an optional modulation scheme applied to BPSK, QPSK and 16-QAM modulation is another technique being considered. Ensuring all 802.11ax measurement solutions support these techniques will be essential.

05 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper Dealing with higher order modulation 802.11ax aims to quadruple wireless speed up to 10 Gbps to individual network clients using new Modulation and Coding Scheme (MCS) Index level 10 and 11 with a 1024QAM modulation scheme. With higher order modulation, the system becomes more sensitive to internal and external impairments, thus, requiring a higher SNR to maintain an acceptable BER/FER level. Obtaining an SNR above 35 db is difficult to achieve using economical hardware, since it exceeds the noise figure, impairments and losses of typical transceivers, particularly in RF circuits and ADCs/DACs. Consequently, being able to accurately model the effect that real imperfect hardware plays in the demodulation of the signal and resulting BER/FER becomes critical. MIMO Detection Techniques At the receiver side, the main hindrance to employing 1024QAM in MIMO systems is the scalability of existing MIMO detection techniques. There are popular detectors that work in the range of current MIMO systems (e.g., Zero Forcing (ZF), Minimum Mean Square Error (MMSE), and the very complex Maximum Likelihood (ML) detector). There are also many suboptimal detectors that offer various complexity/performance tradeoffs. However, with 802.11ax, the need to build, model and test new custom detection algorithms in simulation first is going to be of the utmost importance. Addressing The Challenges Head On Addressing these challenges requires appropriate test and measurement solutions for simulation, signal generation and signal analysis, to address all stages of the product lifecycle, from design to validation and all the way through to manufacturing. However, because 802.11ax is an amendment to the 802.11 standard and currently still in development, many measurement solutions are also in development or in the process of being expanded to support the emerging standard. That s not to say there aren t options for those engineers working on 802.11ax systems prior to the specification s official ratification. One option is to use pre-existing IP to quickly model new 802.11ax systems. This is possible today using Electronic System Level (ESL) design software. The ESL software provides engineers the flexibility to modify current 802.11ac libraries and OFDM reference transmitter/receiver models, connected with flexible 3GPP channel models, to accommodate the changes in the emerging standard. The necessary digital signal processing algorithms (e.g., for optimal MIMO detection) can also be developed, and engineers can simulate baseband processing, model the RF transceiver and even create their wireless channel all from within the software.

06 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper Assuming the ESL software links to a range of hardware, engineers can then take their simulated waveforms and play them through actual test and measurement instruments. Doing so provides the ideal way to test early 802.11ax devices (Figure 1). In addition to flexible ESL software, there are a number of other solutions tied more closely to the 802.11ax specification that can be used during test. A prime example would be Signal Studio for the 802.11 standard that s been enhanced to support 802.11ax. Using such software, engineers can quickly and easily generate test signals, with or without impairments, and then download the waveforms to a signal generator. The ideal 802.11ax signal creation software will support all new 802.11ax capabilities, including such things as: 1024QAM, Long Symbol/Guard, OFDMA, MU-MIMO, and DCM. And, it will be able to generate waveforms for multi-user signals. The availability of flexible and hierarchical parameters to support all the new High Efficiency (HE) PLCP Protocol Data Unit (PPDU) formats in 802.11ax will also be critical. SystemVue Use SystemVue library as a 1 reference baseband source and receiver Custom modern design : Replaceable in C++,.m or SV DSP parts formats Reference OFDM source Reference receiver Automatic waveform creation & download 2 Select instruments for the specific DUT test E6640A EXM 4 transmit/receive modules with 160 MHz BW each I Q I Q RFIC DUT BBIQ - RF RF - BBIQ 3 BER/FER measurement Use SystemVue measurement IP BER/EVM Figure 1. Shown here is a proposed, early 802.11ax device evaluation flow diagram. At the core of the flow is Keysight s SystemVue ESL software. With its powerful capabilities and flexibility, it can be used to address the challenges associated with the design and test of 802.11ax devices. Using SystemVue, the IP developed in the pre-standard proposal phase can be quickly connected to various Keysight instruments for the design verification test.

07 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper The 89600 VSA software is another tool that engineers can use today for demodulation and analysis of 802.11ax signals (Figure 2). Generally speaking, hardware platforms for signal generation and signal analysis can be chosen based on the performance requirements and test cases, which are optimized for R&D and manufacturing, respectively. Figure 2. Shown here is 802.11ax analysis performed using Keysight s 89600 VSA software and X-Series measurement applications running on a Keysight signal analyzer. Each solution offers options for 802.11ax modulation analysis, covering all of the bandwidths and modulation types, up to 8x8 MIMO. Both support a variety of hardware configurations for the performance, bandwidth, and number of channels engineers need. Conclusion The 802.11ax specification is the next in a long line of 802.11 standards promising not only to deliver higher throughput but really improve the end-user experience, especially in dense deployments. While the specification has not yet been finalized, it s clear that the new technologies and techniques it plans to utilize will present some unique challenges for the engineers designing and testing 802.11ax devices. The good news is that there are measurement solutions for simulation, signal generation and signal analysis that engineers can use today to test their 802.11ax devices and that can address these challenges head on at all stages of the product lifecycle. Moreover, their capabilities will track the evolution of the 802.11ax specification as it winds its way toward formalization. In doing so, these solutions will not only ensure engineers have the tools they need to design and test their 802.11ax devices, but also help enable the rapid deployment and industry-wide acceptance of these 802.11ax-based devices. This article was originally published in the May issue of Microwave Journal, May 2016. About the Authors Mike Wohlert is the product line brand manager for Keysight s base station emulator and wireless test instruments. Prior to his current role, he s had various positions as Market Development Manager for the Americas, Business Development Manager and Technical Support focused on emerging communications. Mike joined Keysight in 2006 after graduating from Cal Poly San Luis Obispo with a BS in electrical engineering. Sangkyo Shin is a wireless communications and digital signal process specialist at Kesyight Technologies. For the past 15 years he has worked as a wireless communications application consultant helping to develop specialized custom solutions and delivering compelling technical content using a variety of Keysight s hardware and software products. Sangkyo has also planned Keysight s EDA 5G reference IP library product and authored many application notes, technical papers, articles, and 4G/5G simulation technology content. Prior to joining Keysight in 2000, he held a number of system integration engineering positions at LG electronics. Xiang Feng is a product planner with Keysight s Communication Solution Group, working on signal sources and analysis solutions for wireless connectivity, IoT, GNSS, broadcasting and test solutions for PA/FEM, etc. Prior to her current responsibilities, Xiang was an R&D engineer for Keysight EEsof EDA where she worked on ADS Wireless Design Libraries, such as cdma2000, WCDAM, TD-SCDMA. Xiang joined Hewlett-Packard in 1998 as an R&D engineer after graduating from Southeast University with a Ph.D degree in Communication and Information Systems.

08 Keysight Eye on 802.11ax: What it is and How to Overcome the Test Challenges it Creates - White Paper Evolving Since 1939 Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight. For more information on Keysight Technologies products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus Americas Canada (877) 894 4414 Brazil 55 11 3351 7010 Mexico 001 800 254 2440 United States (800) 829 4444 mykeysight www.keysight.com/find/mykeysight A personalized view into the information most relevant to you. http://www.keysight.com/find/emt_product_registration Register your products to get up-to-date product information and find warranty information. Keysight Services www.keysight.com/find/service Keysight Services can help from acquisition to renewal across your instrument s lifecycle. Our comprehensive service offerings onestop calibration, repair, asset management, technology refresh, consulting, training and more helps you improve product quality and lower costs. Keysight Assurance Plans www.keysight.com/find/assuranceplans Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements. Keysight Channel Partners www.keysight.com/find/channelpartners Get the best of both worlds: Keysight s measurement expertise and product breadth, combined with channel partner convenience. Asia Pacific Australia 1 800 629 485 China 800 810 0189 Hong Kong 800 938 693 India 1 800 11 2626 Japan 0120 (421) 345 Korea 080 769 0800 Malaysia 1 800 888 848 Singapore 1 800 375 8100 Taiwan 0800 047 866 Other AP Countries (65) 6375 8100 Europe & Middle East Austria 0800 001122 Belgium 0800 58580 Finland 0800 523252 France 0805 980333 Germany 0800 6270999 Ireland 1800 832700 Israel 1 809 343051 Italy 800 599100 Luxembourg +32 800 58580 Netherlands 0800 0233200 Russia 8800 5009286 Spain 800 000154 Sweden 0200 882255 Switzerland 0800 805353 Opt. 1 (DE) Opt. 2 (FR) Opt. 3 (IT) United Kingdom 0800 0260637 For other unlisted countries: www.keysight.com/find/contactus (BP-9-7-17) DEKRA Certified ISO9001 Quality Management System www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System This information is subject to change without notice. Keysight Technologies, 2017 Published in USA, December 2, 2017 5992-1581EN www.keysight.com