Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Similar documents
Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article UWB Directive Triangular Patch Antenna

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Compact Multiantenna

Frequency tunable antenna for Digital Video broadcasting handheld application

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Low-Profile and Small Capacitively Fed VHF Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

Application Article Dual-Beam Antenna Design for Autonomous Sensor Network Applications

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article Quadrature Oscillators Using Operational Amplifiers

Intermodulation Distortion and Compression Point Measurement of Active Integrated Antennas Using a Radiative Method

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

A compact dual-band dual-port diversity antenna for LTE

Politecnico di Torino. Porto Institutional Repository

Research Article A New Translinear-Based Dual-Output Square-Rooting Circuit

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

A design methodology for electrically small superdirective antenna arrays

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

ELECTRONICALLY SWITCHED BEAM DISK-LOADED MONOPOLE ARRAY ANTENNA

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

Research Article Small-Size Wearable High-Efficiency TAG Antenna for UHF RFID of People

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Research Article Low-Profile Dual-Wideband MIMO Antenna with Low ECC for LTE and Wi-Fi Applications

Small Array Design Using Parasitic Superdirective Antennas

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO LINKS

Electrically Reconfigurable Radiation Patterns of Slot Antenna Array Using Agile Plasma Wall

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications

Chapter 7 Design of the UWB Fractal Antenna

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Reconfigurable Cylindrical Plasma Antenna

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

A Broadband Omnidirectional Antenna Array for Base Station

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

Development of a noval Switched Beam Antenna for Communications

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Research Article Design and Optimization of LTE 1800 MIMO Antenna

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

Research Article A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

ON THE DESIGN OF ULTRA WIDE BAND RECTAN- GULAR SLOT ANTENNA EXCITED BY A FLARED MI- CROSTRIP FEED LINE

Research Article Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

Loop and Slot Antennas

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

On the Design of CPW Fed Appollian Gasket Multiband Antenna

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING

Research Article Directive Stacked Patch Antenna for UWB Applications

Fractal Monopoles: A Comparative Study

Transcription:

Antennas and Propagation Volume 2012, Article ID 193716, 4 pages doi:10.1155/2012/193716 Research Article Very Compact and Broadband Active Antenna for VHF Band Applications Y. Taachouche, F. Colombel, and M. Himdi Institut d Electronique et de Télécommunication de Rennes, Université de Rennes 1, UMR CNRS 6164, 263 avenue, Général Leclerc, 35042 Rennes, France Correspondence should be addressed to Y. Taachouche, yaakoub.taachouche@univ-rennes1.fr Received 14 September 2011; Revised 12 December 2011; Accepted 12 December 2011 Academic Editor: Mandeep Jit Singh Copyright 2012 Y. Taachouche et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An active receiving antenna with small size consisting of a monopole loaded with a transistor bipolar is presented in this paper. A transistor is used in order to miniaturize the receiving active antenna size in VHF band. The vertical size of the structure is equal to λ/175, where λ is the wavelength at the lower frequency of the bandwidth. Despite the very small size of the antenna, the frequency bandwidth is very wide and the gain is suitable for FM application with sensitive receivers. 1. Introduction Miniaturized and broadband antennas with omnidirectional coverage have attracted attention for industrial applications. One of the major challenges is the integration of antennas inside devices including many systems in a limited area. For example, today s mobile phones are innovative devices that provide a wide variety of services to users. One of the most attractive mobile phone services is the entertainment service, and specially the functionality that allows users to listen to FM radios through their mobile phones. This development induces a growing demand of FM antennas for mobile phones and the necessity of innovative technologies to develop internal small FM antennas, which replace the external wire antennas that exhibit current mobile phones in the market. For automobile application, where many radio systems work as communication systems, FM radio reception is collocated on the top roof of the car, and the very low visual impact of the antenna is required. The goal of this paper is to propose a compact antenna to replace the historical monopole to improve the integration capability of the antenna in VHF band applications systems. Many passive antennas such as monopole, dipole, and printed antenna have been largely studied to yield small size relatively to the wavelength or broadband behaviour. Previous studies have shown that antenna miniaturization impacts negatively antenna bandwidth and impedance matching [1]. After the invention of high frequency transistor, the study of active antenna has really started at the beginning of the 1960s [2]. As it is mentioned in [3, 4], active antenna provides new opportunities for many applications including increase of bandwidth or size reduction. As explained in [2], a practical integrated design is a transistorized dipole, which is a combination of a resonant half wavelength dipole and a VHF transistor. This combination between a radiating element and an active component provides high gain and size reduction of λ/53. In [5], a fed emitter base loop dipole has been proposed as a transmitting antenna. A total height of λ/2000 instead of λ/2 antenna has been built and compared with a passive dipole of equal height. The active antenna is very broadband and is able to operate at very low frequencies with very small size. In [5 8], it has been explained that an active monopole fed by a microwave transistor is able to provide a greater frequency bandwidth than a passive monopole. For example, in [6], the variation of input impedance of an active antenna over the range 0.77 1.45 GHz is explained. In order to provide innovative design, the growing interest for active antennas has required more accurate analysis method. A hybrid analysis including electromagnetic full wave and nonlinear circuit solver is used in [9] and provided

2 Antennas and Propagation Z X ϑ Area 1 Area 2 Reflector plane Z ϑ Y 500 mmh1 P w2 w1 h2 Parasite SMA connector 500 mm Zoom 50 mm Monopole B E C Bipolar transistor BFR182 Inductances of 100 μh Capacitors of 1 μf Resistance of 68 k Ω DC voltage Resistance of 1 k Ω Ground plane in the back side of the area 2 of the circuit board Front view Substrate X Y Monopole Area 1 Transistor Area 2 SMA connector Reflector plane 500 mm Ground plane in the back side of the area 2 of the circuit board Side view Figure 1: Geometry of the proposed active receiving antenna (h1 = 25 mm, h2 = 5 mm, P = 20 mm, w = 4 mm, w1 = 2 mm, w2 = 1 mm). Figure 2: Prototype of the active receiving antenna: front view, back view with the limited ground plane. accurate theoretical validated with measurements on an oscillator active antenna. In this paper, we are interested in the improvements brought by the active antennas towards size reduction and we propose an active antenna based on a printed monopole associated to a bipolar transistor. In the first part, we present the antenna design including the bias circuit. In the second part, we have carried out a theoretical and experimental study of an active receiving antenna in VHF band including reflection coefficient and radiation pattern measurements. The theoretical approach is based on a hybrid method where the electromagnetic full wave software CST is used. 2. Design of the Active Antenna The structure of the active receiving antenna is shown in Figure 1. The antenna is a combination of a monopole and a high frequency bipolar transistor (BFR182). The antenna has

Antennas and Propagation 3 0 j1 j0.5 j2 j0.2 j5 S11 (db) 0.2 0.5 1 2 5 30 j0.2 j5 40 0 0.1 0.2 0.3 0.4 0.5 Frequency (GHz) j0.5 j1 j2 Figure 3: Simulated and measured S 11 of the active receiving antenna. Simulated and measured input impedances of the active receiving antenna (10 500 MHz) (dashed line) measured, (solid line) simulated. 0 0 0 0 120 120 120 120 150 180 150 150 180 150 (c) (d) Figure 4: Measured normalized radiation patterns in H-plane, E-plane. E-plane at 80 MHz for solid line ϕ = 0 dashed line ϕ =, E-plane at 100 MHz for solid line ϕ = 0 dashed line ϕ =, (c) H-plane at 80 MHz for θ =, and (d) H-plane at 100 MHz for θ =. been printed on a Neltec NX9300 substrate (ε r = 3, h = 0.786 mm, tan δ = 0.0023) and is placed above a limited square reflector plane (500 500 4mm 3 ). As shown in Figure 1, the monopole has been cut into two parts and the bipolar transistor BFR 182 is directly integrated between these two parts of the monopole without matching circuit. The antenna is connected to an SMA connector through a 50 Ω microstrip line. The BFR182 transistor is a PNP bipolar transistor for low-noise and high-gain broadband amplifier applications,

4 Antennas and Propagation and works up to 8 GHz. It is used in common emitter configuration as an amplifier. The emitter of the transistor is grounded through the parasitic printed line, the transistor base and collector are linked to the upper part and to the bottom part of the monopole, respectively. We can also notice that the bias circuit of the transistor is located on the left side of the monopole. The transistor is located at 5 mm over the ground plane (1/6 of the height of the monopole). The optimized dimensions of the proposed antenna are reported in Figure 1 to obtain the optimum gain and bandwidth. In order to isolate the DC voltage from RF signal, two chokes (L1 = L2 = 100 μh) are located in the base and in the collector of the transistor, respectively. C3, C4, and C2 are decoupling capacitors of 1 μf each. The value of the resistances (R1 = 1 kω, R2 = 68 kω) has been calculated in order to obtain the collector to emitter voltage (Vce) and collector current (Ic) of Vce = 8V and Ic = 10mA. Figure 2 shows the prototype of the active antenna built for the measurements. 3. Results In this section, we present simulated and measured results obtained from the active receiving antenna which operates in VHF band. In the simulation of the active antenna, we combine the results of the electromagnetic calculation of the antenna with electrical calculation of the bias circuit of the transistor. It conducts to a full analysis of the active antenna [9]. This simulation was performed with CST Microwave Studio. In Figure 3, we show the reflection coefficient and the impedance of the proposed antenna between 10 MHz and 500 MHz. Even if there is a shift between theory and measurement, the results are still in good agreement. We can explain these discrepancies with the difference between the theoretical parameters of the transistor provided by the PSPICE model and the real one. The measurements exhibit a db bandwidth of 94% around 107.5 MHz. The height of the active antenna is close toλ/175, where λ is the wavelength at the lowest operating frequency (57 MHz). These measurements results are very interesting towards the size of the receiving antenna compared to previous contribution [2], where the height of the active antenna was 56 cm. This height was equal to λ/53 at 10 MHz. As a result, the db bandwidth of our antenna is close to 94%. It is also an achievement because regarding passive antenna, the size reduction often implies narrow frequency band. For example, in [10] the passive handset antenna design for FM reception has been presented with a 3 db bandwidth equal to 15.5% and a gain of 18.7 dbi. In Figure 4, we presented the measured radiation patterns of the proposed antenna in the E-plane (ϕ = 0 ) and in H-plane (ϕ = ) at 80 MHz and 100 MHz. The plots show nearly omnidirectional patterns in the H-plane with ripples of 6.36 db at 80 MHz and 4.4 db at 100 MHz. The E-planes exhibit symmetrical radiation patterns. The measured gain of the active receiving antenna at 80 MHz is 23.39 dbi and 19.6 dbi at 100 MHz. The gain values correspond to the maximal gain obtained in the E-planes. This gain value is very low but should be comparable with a passive antenna with the same height. We have not measured this monopole, we have just simulated it and we found a low theoretical gain close to 49 dbi. 4. Conclusion A very small active receiving antenna has been investigated with a bandwidth of 94% around 107.5 MHz. The active receiving antenna is based on a monopole structure associated to a transistor. The vertical size of the structure is close to λ/175, where λ is the wavelength at the lowest frequency of the bandwidth. Simulations and measurements are in good agreement. The measured gain of the active receiving antenna at 100 MHz is 19.6 dbi. The very high sensitivity of VHF receivers, for example, in FM band, allows applications when a very low visual impact of the antenna is required. References [1] H. A. Wheeler, Fundamental limitations of small antennas, Proceedings of the IRE, vol. 35, no. 4, pp. 1479 1484, 1947. [2] H. H. Meinke, Transistorized Receiving Antennas, Institut fur Hochfrequenztechnik der Technischen Hochschule, Munchen, Germany, 1967. [3] Y. Qian and T. Itoh, Progress in active integrated antennas and their applications, IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1891 1900, 1998. [4] K. Chang, R. A. York, P. S. Hall, and T. Itoh, Active integrated antennas, IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 937 943, 2002. [5] T. S. M. Maclean and G. Morris, Short active transmitting antenna with very large height reduction, IEEE Transactions on Antennas and Propagation, vol. 23, no. 2, pp. 286 287, 1975. [6] A. P. Anderson and M. Dawoud, The performance of transistor fed monopoles in active antennas, IEEE Transactions on Antennas and Propagation, vol. 21, no. 3, pp. 371 374, 1973. [7] P. A. Ramsdale and T. S. M. Maclean, Active loop-dipole aerials, Proceedings of the Institution of Electrical Engineers, vol. 118, no. 12, pp. 1698 1710, 1971. [8] J. Copeland, W. Robertson, and R. Verstraete, Antennafier arrays, IEEE Transactions on Antennas and Propagation, vol. 12, no. 2, pp. 227 233, 1964. [9] R. G. Ertürk, P. Rojas, and Roblin, Hybrid analysis/design method for active integrated antennas, IEE Proceedings of Microwaves, Antennas and Propagation, vol. 146, no. 2, pp. 131 137, 1999. [10] J. Anguera, D. Aguilar, J. Vergés,M.Ribó, and C. Puente, Hanset antenna design for FM reception, in Proceedings of the IEEE Antennas and Propagation Society International Symposium, San Diego, Calif, USA, 2008.

Rotating Machinery The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Civil Submit your manuscripts at Electrical and Computer Robotics VLSI Design OptoElectronics Navigation and Observation Chemical Active and Passive Electronic Components Antennas and Propagation Aerospace Volume 2010 Modelling & Simulation in Shock and Vibration Acoustics and Vibration