SG2524 SG3524 REGULATING PULSE WIDTH MODULATORS

Similar documents
Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators

.100 Hz TO 500 KHz OSCILLATOR RANGE

L A POWER SWITCHING REGULATOR

. VERY LOW DISTORTION . AUTOMATIC QUIESCENT CURRENT TDA W HI-FI DUAL AUDIO DRIVER. WIDE SUPPLY VOLTAGE RANGE : 20 TO 90 V.

L A POWER SWITCHING REGULATOR

TDA7285D STEREO CASSETTE PLAYER AND MOTOR SPEED CONTROLLER

TDA1904 4W AUDIO AMPLIFIER

. HIGH OUTPUT POWER TDA2009A W STEREO AMPLIFIER. ( W D = 1%) HIGH CURRENT CAPABILITY (UP TO 3.5A)

L165 3A POWER OPERATIONAL AMPLIFIER

TDA1905 5W AUDIO AMPLIFIER WITH MUTING

TDA7263M W STEREO AMPLIFIER WITH MUTING

TDA W STEREO AMPLIFIER WITH MUTING

TDA W Hi-Fi AUDIO POWER AMPLIFIER

TDA7233 TDA7233D 1W AUDIO AMPLIFIER WITH MUTE

TDA2004A W STEREO AMPLIFIER FOR CAR RADIO

TDA1151 MOTOR SPEED REGULATOR

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

DatasheetArchive.com. Request For Quotation

LM138/238 LM338 THREE-TERMINAL 5-A ADJUSTABLE VOLTAGE REGULATORS

TDA W Hi-Fi AUDIO AMPLIFIER

L4964 HIGH CURRENT SWITCHING REGULATOR

TEA3717 STEPPER MOTOR DRIVER

LM137/LM237 LM337 THREE-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATORS

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

L4972A L4972AD 2A SWITCHING REGULATOR

TEA2025B TEA2025D STEREO AUDIO AMPLIFIER

TDA7240AV 20W BRIDGE AMPLIFIER FOR CAR RADIO

TDA W AUDIO AMPLIFIER

L4975A 5A SWITCHING REGULATOR

TDA7245 5W AUDIO AMPLIFIER WITH MUTING AND STAND-BY

L9307 L9309 DUAL HIGH CURRENT LOW SIDE DRIVER

4 x 6W POWER AMPLIFIER FOR CAR RADIO

TDA1675A VERTICAL DEFLECTION CIRCUIT SYNCHRONISATION CIRCUIT

Symbol Parameter Value Unit Vi-o Input-output Differential Voltage 40 V IO Output Current Intenrally Limited Top

L A POWER SWITCHING REGULATOR

. COMPLETE VERTICAL DEFLECTION . LOW NOISE . SUITABLE FOR HIGH DEFINITION TDA1170N LOW-NOISE TV VERTICAL DEFLECTION SYSTEM SYSTEM MONITORS

SG1524/SG2524/SG3524 REGULATING PULSE WIDTH MODULATOR DESCRIPTION FEATURES HIGH RELIABILITY FEATURES - SG1524 BLOCK DIAGRAM

TDA7284D RECORD/PLAYBACK CIRCUIT WITH ALC

L2750 DUAL LOW DROP HIGH POWER OPERATIONAL AMPLIFIER

TDA8174 TDA8174W VERTICAL DEFLECTION CIRCUIT RAMP GENERATOR INDEPENDENT AMPLITUDE ADJUSTEMENT BUFFER STAGE POWER AMPLIFIER

TDA1180P TV HORIZONTAL PROCESSOR

L A POWER SWITCHING REGULATOR

2N2219A 2N2222A HIGH SPEED SWITCHES

L272 DUAL POWER OPERATIONAL AMPLIFIERS

L297 L297A STEPPER MOTOR CONTROLLERS

Obsolete Product(s) - Obsolete Product(s)


C78L00 SERIES CMOS POSITIVE VOLTAGE REGULATORS VERY LOW DROP - VERY LOW QUIESCENT. LOW CURRENT CONSUMPTION (TYP. 19µA) WIDE OPERATING VOLTAGE RANGE

ST755 ADJUSTABLE INVERTING NEGATIVE OUTPUT CURRENT MODE PWM REGULATORS

PBL3717A STEPPER MOTOR DRIVER

Obsolete Product(s) - Obsolete Product(s)


TL494 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

L9305A DUAL HIGH CURRENT RELAY DRIVER

L4964 HIGH CURRENT SWITCHING REGULATOR

L3845D TRUNK INTERFACE

L165 3A POWER OPERATIONAL AMPLIFIER

L2720/2/4 LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

L294 SWITCH-MODE SOLENOID DRIVER

LM138/LM238 LM338 THREE-TERMINAL 5 A ADJUSTABLE VOLTAGE REGULATORS

L9444VB/L9448VB L9480VB

Obsolete Product(s) - Obsolete Product(s)

50V - 1.5A QUAD DARLINGTON SWITCHES

Pulse-Width-Modulation Control Circuits

TEB1033 TEF1033-TEC1033

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

. BANDWIDTH : 10MHz TYPICAL. . RISE AND FALL TIME : 50ns TYPICAL . CRT CATHODES CURRENT OUTPUTS FOR TEA5101B RGB HIGH VOLTAGE VIDEO AMPLIFIER

TL494M PULSE-WIDTH-MODULATION CONTROL CIRCUIT

. CRT CATHODE CURRENT OUTPUTS FOR . FLASHOVER PROTECTION . POWER DISSIPATION : 3.6W STV5112 RGB HIGH VOLTAGE VIDEO AMPLIFIER

TDA2170 TV VERTICAL DEFLECTION OUTPUT CIRCUIT. The functions incorporated are : POWER AMPLIFIER FLYBACK GENERATOR REFERENCE VOLTAGE THERMAL PROTECTION

TDA7331D SINGLE CHIP RDS DEMODULATOR + FILTER

L4974A 3.5A SWITCHING REGULATOR

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER

L4963W L4963D 1.5A SWITCHING REGULATOR

L4940 series VERY LOW DROP 1.5 A REGULATORS

2N2219A 2N2222A HIGH SPEED SWITCHES

Vertical Deflection Booster for 2-A PP TV/Monitor Applications with 70-V Flyback Generator. Supply. Power Amplifier. Ground or Negative Supply

UNISONIC TECHNOLOGIES CO., LTD

TDA W CAR RADIO AUDIO AMPLIFIER

. POWER AMPLIFIER . FLYBACK GENERATOR . THERMAL PROTECTION TDA9302H VERTICAL DEFLECTION OUTPUT CIRCUIT

. 2 SEPARATE STANDBY : REDUCED. . HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 3mV . HIGH VIDEO PERFORMANCES :

Obsolete Product(s) - Obsolete Product(s)

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

L4941 VERY LOW DROP 1A REGULATOR. LOW DROPOUT VOLTAGE (450 mv typ at 1A) VERY LOW QUIESCENT CURRENT

MC33001/A/B MC34001/A/B MC35001/A/B GENERAL PURPOSE SINGLE JFET OPERATIONAL AMPLIFIERS.

TL061 TL061A - TL061B

TDA x 2W STEREO AUDIO AMPLIFIER

Part Number Temperature Range Package Packing Marking. DIP14 Tube LM2902N LM2902D/DT SO-14 Tube or Tape & Reel

TSM100 SINGLE OPERATIONAL AMPLIFIER AND SINGLE COMPARATOR

TDA8136 DUAL 12V REGULATOR WITH DISABLE. OUTPUT CURRENTS UP TO 600mA FIXED PRECISION OUTPUT 1 VOLTAGE 12V ± 2% FIXED PRECISION OUTPUT 2 VOLTAGE

TL494 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

L6219 STEPPER MOTOR DRIVER

SD1731 (TH562) RF & MICROWAVE TRANSISTORS HF SSB APPLICATIONS. OPTIMIZED FOR SSB 30 MHz 50 VOLTS EFFICIENCY 40% COMMON EMITTER

TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

L9703 OCTAL GROUND CONTACT MONITORING CIRCUIT

Transcription:

SG2524 SG3524 REGULATING PULSE WIDTH MODULATORS COMPLETE PWM POWER CONTROL CIR- CUITRY UNCOMMITTED OUTPUTS FOR SINGLE- ENDED OR PUSH PULL APPLICATIONS LOW STANDBY CURRENT 8mA TYPICAL OPERATION UP TO 300KHz 1% MAXIMUM TEMPERATURE VARIATION OF REFERENCE VOLTAGE DIP16 SO16 ORDERING NUMBERS: SG2524N (DIP16) SG3524N (DIP16) SG2524P (SO16) SG3524P (SO16) DESCRIPTION The SG2524, and SG3524 incorporate on a single monolithic chip all the function required for the construction of regulating power suppies inverters or switching regulators. They can also be used as the control element for high power-output applications. The SG3524 family was designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers and polarity converter applications employing fixed-frequency, pulse-width modulation techniques. The dual alternating outputs allows either single-ended or push-pull applications. Each device includes an on-ship reference, error amplifier, programmable oscillator, pulse-steering flip flop, two uncommitted output transistors, a high-gain comparator, and currentlimiting and shut-down circuitry. BLOCK DIAGRAM December 1995 1/9 This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit V IN Supply Voltage 40 V IC Collector Output Current 100 ma IR Reference Output Current 50 ma I T Current Through C T Terminal 5 ma Ptot Total Power Dissipation at Tamb = 70 C 1000 mw T stg Storage Temperature Range 65 to 150 C Top Operating Ambient Temperature Range: SG2524 SG3524 25to85 0to70 C C PIN CONNECTION (Top view) THERMAL DATA Symbol Parameter DIP16 SO16 Unit R th j-amb Thermal Resistance Junction-ambient Max. R th j-alumina Thermal Resistance Junction-alumina (*) Max. (*) Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 x 20mm; 0.65mm thickness with infinite heatsink. 80 50 C/W C/W 2/9

ELECTRICAL CHARACTERISTICS (unless otherwise stated, these specifications apply for Tj = -25 to +85 C for the SG2524, and 0 to 70 C for the SG3524, VIN = 20V, and f = 20KHz). Symbol Parameter Test Condition SG2524 SG3524 Min. Typ. Max. Min. Typ. Max. Unit REFERENCE SECTION V REF Output Voltage 4.8 5 5.2 4.6 5 5.4 V V REF Line Regulation VIN = 8 to 40V 10 20 10 30 mv V REF Load Regulation IL = 0 to 20mA 20 50 20 50 mv Ripple Rejection f = 120Hz, Tj =25 C 66 66 db Short Circuit Current VREF = 0,Tj = 25 C 100 100 ma Limit V REF / T Temperature Stability Over Operating 0.3 1 0.3 1 % Temperature range V REF Long Term Stability Tj = 125 C, t = 1000Hrs 20 20 mv OSCILLATOR SECTION f MAX Maximum Frequency C T = 0.001µF, R T =2KΩ 300 300 KHz Initial Accuracy RT and CT Constant 5 5 % Voltage Stability VIN = 8 to 40V, Tj = 25 C 1 1 % f/ T Temperature Stability Over Operating Temperature Range 2 2 % Output Amplitude Pin 3, Tj = 25 C 3.5 3.5 V Output Pulse Width CT = 0.01µF, Tj = 25 C 0.5 0.5 µs ERROR AMPLIFIER SECTION VOS Input Offset Voltage VCM = 2.5V 0.5 5 2 10 mv I b Input Bias Current 2 10 2 10 µa GV Open Loop Voltage Gain 72 80 60 80 db CMV Common Mode Voltage Tj = 25 C 1.8 3.4 1.8 3.4 V CMR Common Mode Rejection T j =25 C 70 70 db B Small Signal Bandwidth A V = 0dB, T j =25 C 3 3 MHz V O Output Voltage T j =25 C 0.5 3.8 0.5 3.8 V COMPARATOR SECTION Duty-cycle % Each Output On 0 45 0 45 % VIT Input Threshold Zero Duty-cycle 1 1 V Maximum Duty-cycle 3.5 3.5 V Ib Input Bias Current 1 1 µa CURRENT LIMITING SECTION Sense Voltage Pin 9 = 2V with Error Amp. Set for Max. Out. Tj =25 C 190 200 210 180 200 220 mv Sense Voltage T.C. 0.2 0.2 mv/ C CMV Common Mode Voltage 1 1 1 1 OUTPUT SECTION(each output) Collector-emitter Voltage 40 40 V Collector Leackage Curr. VCE = 40V 0.1 50 0.1 50 µa Saturation Voltage IC = 50mA 1 2 1 2 V Emitter Output Voltage VIN = 20V 17 18 17 18 V t r Rise Time R C =2KΩ,T j =25 C 0.2 0.2 µs tf Fall Time RC = 2KΩ,Tj = 25 C 0.1 0.1 µs Iq (*) Total Standby Current VIN = 40V 8 10 8 10 ma (*) Excluding oscillator charging current, error and current limitdividers, and with outputs open. 3/9

Figure 1: Open-loop Voltage Amplification of Error Amplifier vs. Frequency Figure 2: Oscillator Frequency vs. Timing Components. Figure 3: Output Dead Time vs. Timing Capacitance Value. Figure 4: Output Saturation Voltage vs. load Current. Figure 5: Open Loop Test Circuit. 4/9

PRINCIPLES OF OPERATION The SG2524/3524 is a fixed frequency pulsewith-modulation voltage regulator control circuit. The regulator operates at a frequency that is programmed by one timing resistor (R T ) and one timing capacitor (C T ). R T established a constant charging current for CT. This results in a linear voltage ramp at CT, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. the SG2524/3524 contains, an on-board 5V regulator that serves as a reference as well as powering the SG2524/3524 s internal control circuitry and is also useful in supplying external support functions. This reference voltage is lowered externally by a resistor divider to provide a reference within the common mode range the error amplifier or an external reference may be used. The power supply output is sensed by a second resistor divider network to generale a feedback signal to error amplifier. The amplifier output voltage is then compared to the linear voltage ramp at CT. The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output pass transistors (Q A or Q B ) by the pulsesteering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both output are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the value of CT. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current limiting at shutdown circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier, or to provide additional control to the regulator. RECOMMENDED OPERATING CONDITIONS Supply voltage V IN Reference Output Current Current trough CT Terminal Timing Resistor, R T Timing Capacitor, CT 8 to 40V 0 to 20mA - 0.03 to -2mA 1.8 to 100KΩ 0.001 to 0.1µF TYPICAL APPLICATIONS DATA OSCILLATOR The oscillator controls the frequency of the SG2524 and is programmed by R T and C T according to the approximate formula: f = 1.18 R T C T where: R T is in KΩ CT is in µf fisinkhz Pratical values of CT fall between 0.001 and 0.1µF. Pratical values of R T fall between 1.8 and 100KΩ. This results in a frequency range typically from 120Hz to to 500KHz. BLANKING The output pulse of oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of C T.If small values of C T are required for frequency control, the oscillator output pulse width may still be increased by applying a shunt capacitance of up to 100pF from pin 3 to ground. If still greater dead-time is required, it should be accomplished by limiting the maximum duty cycle by clamping the output of the error amplifier. This can easily be done with the circuit below: Figure 6. SYNCRONOUS OPERATION When an external clock is desired, a clock pulse of approximately 3V can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately 2KΩ. In this configuration RT CT must be selected for a clock period slightly greater than that the external clock. If two more SG2524 regulators are to be operated synchronously, all oscillator output terminals should be tied together, all CT terminals connected to a single timing capacitor, and timing resistor connected to a single R T terminal. The other R T terminals can be left open or shorted to V REF. Minimum lead lengths should be used between the CT terminals. 5/9

Figure 7: Flyback Converter Circuit. Figure 8: PUSH-PULL Transformer-coupled circuit. 6/9

DIP16 PACKAGE MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 B 0.77 1.65 0.030 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 17.78 0.700 F 7.1 0.280 I 5.1 0.201 L 3.3 0.130 Z 1.27 0.050 7/9

SO16 NARROW PACKAGE MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 1.75 0.069 a1 0.1 0.25 0.004 0.009 a2 1.6 0.063 b 0.35 0.46 0.014 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.020 c1 45 (typ.) D 9.8 10 0.386 0.394 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 F 3.8 4.0 0.150 0.157 L 0.4 1.27 0.150 0.050 M 0.62 0.024 S 8 (max.) 8/9

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of SGS-THOMSON Microelectronics. 1996 SGS-THOMSON Microelectronics All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A. 9/9