InP HBT technology development at IEMN

Similar documents
DC Analysis of InP/GaAsSb DHBT Device Er. Ankit Sharma 1, Dr. Sukhwinder Singh 2

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs

AC Analysis of InP/GaAsSb DHBT Device 1 Er. Ankit Sharma, 2 Dr. Sukhwinder Singh 1

100+ GHz Transistor Electronics: Present and Projected Capabilities

Frequency Limits of Bipolar Integrated Circuits

High-Frequency Transistors High-Frequency ICs. Technologies & Applications

High Power Performance InP/InGaAs Single HBTs

HIGH-SPEED TYPE-II GaAsSb/InP DHBTs FOR MIXED-SIGNAL IC APPLICATIONS HUIMING XU DISSERTATION

Equivalent circuit modeling of InP/InGaAs Heterojunction Phototransistor for application of Radio-on-fiber systems

THz Indium Phosphide Bipolar Transistor Technology

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

Device Research Conference 2007

DEFENSE TECHNICAL INFORMATION CENTER

HOT ELECTRON INJECTION EFFECT AND IMPROVED LINEARITY IN TYPE-I/II DHBT FOR MILLIMETER-WAVE MIXED SIGNAL CIRCUIT APPLICATIONS KUANG-YU CHENG

Galileo, Elephants, & Fast Nano-Devices

Alternative Channel Materials for MOSFET Scaling Below 10nm

Photovoltaic Cells for Optical Power and Data Transmission

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Thin film PV Technologies III- V PV Technology

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

Gallium nitride futures and other stories

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

Lecture 18: Photodetectors

Enhanced Emitter Transit Time for Heterojunction Bipolar Transistors (HBT)

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

sub-mm-wave ICs, University of California, Santa Barbara

Sub-mm-Wave Technologies: Systems, ICs, THz Transistors

An Overview of InP/GaAsSb/InP DHBT in Millimeter and Sub-millimeter Range

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

Gallium nitride (GaN)

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

Chapter 1. Introduction

Department of Electrical Engineering IIT Madras

General look back at MESFET processing. General principles of heterostructure use in FETs

Transistor & IC design for Sub-mm-Wave & THz ICs

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

techniques, and gold metalization in the fabrication of this device.

Fiber-fed wireless systems based on remote up-conversion techniques

50-500GHz Wireless Technologies: Transistors, ICs, and Systems

arxiv:physics/ v2 [physics.optics] 17 Mar 2005

Silicon Bipolar High f T Low Noise Medium Power 12 Volt Transistors

Frequency Limits of InP-based Integrated Circuits

2.8 - CMOS TECHNOLOGY

GaN MMIC PAs for MMW Applicaitons

Instruction manual and data sheet ipca h

Chapter 3 Basics Semiconductor Devices and Processing

Optical Fiber Communication Lecture 11 Detectors

Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers (VCSEL)

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

3 Volt, Low Noise High ft Silicon Transistor. MP4T6310 Series. Features SOT-23. Description SOT-143. Chip

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow

NAME: Last First Signature

Final Report of 1.55 Vertical Cavity Surface Emitting Laser with Dielectric Mirrors

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Features. Description. 100 mil Package. High Output Power:

6.012 Microelectronic Devices and Circuits

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Description. Features. 85 Plastic Package

CHAPTER I INTRODUCTION. mechanisms for the device are yet to be adequately understood. In this thesis, a detailed

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design

Wide Band-Gap Power Device

Power MOSFET Zheng Yang (ERF 3017,

III-V CMOS: Quo Vadis?

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns

Multi-GHz Operation of Tilted- Charge LED for Optical Interconnect

Chapter 6. Silicon-Germanium Technologies

32nm Technology and Beyond

Planarization and Regrowth of Self-Aligned Ohmic Contacts on InGaAs

High power and single frequency quantum. cascade lasers for gas sensing. Stéphane Blaser

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Silicon Bipolar Low Noise Microwave Transistors

PHYSICAL ELECTRONICS(ECE3540) APPLICATIONS OF PHYSICAL ELECTRONICS PART I

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

RF and Microwave Semiconductor Technologies

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

Gallium Nitride & Related Wide Bandgap Materials and Devices

RECENTLY, InP/GaAsSb/InP double heterojunction bipolar

Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs

GaN power electronics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Ultra High-Speed InGaAs Nano-HEMTs

A STUDY INTO THE APPLICABILITY OF P + N + (UNIVERSAL CONTACT) TO POWER SEMICONDUCTOR DIODES AND TRANSISTORS FOR FASTER REVERSE RECOVERY

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Lecture Course. SS Module PY4P03. Dr. P. Stamenov

Solid State Device Fundamentals

UNIT-4. Microwave Engineering

X Band Driver Amplifier. GaAs Monolithic Microwave IC

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions

InP-based Complementary HBT Amplifiers for use in Communication Systems

Innovative Technologies for RF & Power Applications

Transcription:

InP HBT technology development at IEMN Advanced NanOmetric Devices Group, Institut d Electronique de Microelectronique et de Nanotechnology, Lille, FRANCE Date

Outline Which applications for THz GaAsSb/InP DHBT GaInAs/InP SHBT Thermal Management 6.1 Å AlInAsSb/GaInSb DHBT Conclusion

Where is the Terahertz? mm Waves Submm Waves

Applications for Terahertz : Radio Astronomy Observation of the Universe Planck space telescope Cosmic Microwave Background Crédits : European Space Agency

Applications for Terahertz : Science Spectroscopy & Imaging Security Medical diagnostic Analysis

Applications for Terahertz : Telecommunication Optical Fiber Transmission 1 Gb/s 16 Gb/s Terahertz Wireless Communication High-Speed Wireless Transmission THz Carrier Frequency (.2,.6 THz) Data Rate : 4, 1 Gbit/s

Bande interdite (ev) FET &TBH 1 st generation Compound Semiductors for THz Devices FET &TBH 2 sd generation FET &TBH 3 th generation 2,5 2 GaP AlP AlAs AlSb Band Gap Engineering Versatility 1,5 1 GaAs InP ² GaSb AlInAs GaInAs InP GaAsSb GaSb AlSb InSb,5 InSb InAs InAs 5,4 5,5 5,6 5,7 5,8 5,9 6 6,1 6,2 6,3 6,4 6,5 Type I Type II Type III Type I Paramètre de maille (Å) Matériaux µ n (cm 2 /V.s) µ p (cm 2 /V.s) GaAs 85 4 InGaAs 11 3 InAs 33 46 GaSb 5 85 AlSb 2 42 InSb 77 125 Diverses Mobilities High Electron Mobility : InGaAs, InAs, InSb High Hole Mobility : GaSb, InSb

R E r E C BE III-V Bipolar Transistor : 3 Axes of Optimization 1 W E /2 = τ + τ + C r + C r + R base collector be E bc E 2πf Emitter Width InGaAs SG E InP Emitter Undercut v R Bint R Blink R Bext T r b c E C T T 2 b c nkt qi f = f 8πR E max / 2D / 2v n sat cb Ac /Tc ( ) τ ex + bb R C coll cbc Vertical Scaling : Epitaxy Lateral Scaling : Technology C BC Int C BC Link W BC /2 C BC Con Base-Collecteur Width R / R ex bb sh,e c, emet A We Wbc Wlink sh,bc sh,link 12L 6L 2L A e emet Ohmic Contacts Technology & Epitaxy e e contact contacts

Emitter Base Collector

Emitter Last Generation Base Emitter Dimension 15 2 nm Base Collector 1

InP DHBT Type-II Heterostruture InP/GaAsSb/InP Emitter n Base p Type II DHBT InP/GaAsSb : Interests & Structure Collector n Thickness (Å) Material Doping (cm -3 ) Description 5 In,85 Ga,15 As > 4 1 19 : Si Emitter Cap 1 In x Ga 1-x As 4 1 19 : Si Emit. Cap Grad. 8 InP 1 1 19 : Si Emitter 35 InP 6 1 17 : Si Emitter E c 6 1 19 : C 3 GaAs 51 Sb 49 Base 13 Ω/o 13 InP 1 1 17 : Si Collector E V Epitaxial Design Collector Potential Energy Injection High Confinement for Holes High Breakdown Voltage 1 InP 1 1 19 : Si Sub-Collector 5 In,53 Ga,47 As 3 1 19 : Si Cont. Sub-Coll. 2 InP 1 1 19 : Si Sub-Collector 2 In,53 Ga,47 As NID Etch stop Substrate Semi-insulating InP

I C (ma/µm 2 ) I B, I C (A) Current Gain, Type II DHBT InP/GaAsSb : Results DC Measurements 1 8 6 4 2 I B From to 8 µa 5 µa/step A E =.55 x 3.5 µm 2 1 2 3 4 5 V CE (V) 1-1 35 1-2 I B A E =.55 x 3.5 µm 2 3 1-3 I C V CB = V 1-4 Gain 25 1-5 2 1-6 15 1-7 1 1-8 1-9 5 1-1..2.4.6.8 1. V BE (V) BV CEO = 4.6 V @ J E = 1 ka/cm 2 β = 24 M. Zaknoune, et al. IEEE EDL, Vol. 35, No. 3, 214. ρ CBase 7 Ω µm 2, Base ρ sheet = 13 Ω/ ρ CEmit. 2 Ω µm 2

Gain (db) Output Power (dbm), Power Gain (db) PAE (%) Results Type II DHBT InP/GaAsSb : RF & Power Measurements at 94 GHz 4 35 3 25 2 15 1 5 V CE = 1.9 V I C = 6.7 ma/µm2 H 21 2 F T = 31 GHz U F MAX = 48 GHz 1 8 1 9 1 1 1 11 1 12 F T = 31 GHz Frequency (Hz) F MAX = 48 GHz M. Zaknoune, et al. IEEE EDL, Vol. 35, No. 3, 214. A E =.55 x 3.5 µm 2 14 35 Output Power (dbm) 12 Power Gain (db) 3 1 PAE (%) 8 25 6 2 4 15 2 1-2 5-4 A E =.2 x 9.5 µm 2-15 -1-5 5 1 Absorbed Power (dbm) I C = 16 ma/µm 2, I B = 2.6 ma, V CE = 2.8 V P OUT = 12.8 dbm (1.26 mw/µm 2 ) P.A.E = 25 %, Power Gain = 4.5 db

Type I SHBT InP/InGaAs : Interets & Structrure InP SHBT Type-I Heterostruture InP/InGaAs/InGaAs Emitter n Base p Collector n Thickness (Å) Material Doping (cm -3 ) Description 5 InAs > 4 1 19 : Si Emitter Cap 1 In x Ga 1-x As 4 1 19 : Si Emit. Cap Grad. 7 InP 2 1 19 : Si Emitter 3 InP 5 1 17 : Si Emitter 3 In x Ga 1-x As 8 1 19 : C Base Grad. Mature Epitaxial System High Electron Mobilty Low Breakdown Voltage E c E V 5 In x Ga 1-x As NID Collector Grad. In,53 Ga,47 As 5 1 11 : Si Pulse Doping 1 In,53 Ga,47 As NID Collector 1 In,53 Ga,47 As 2 1 19 : Si Sub-Collector 2 InP 2 1 19 : Si Sub-Collector 5 In,53 Ga,47 As 2 1 19 : Si Cont. Sub-Coll. 3 InP 3 1 19 : Si Sub-Collector 2 In,53 Ga,47 As NID Etch stop Substrate Semi-insulating InP

I C (ma/µm 2 ) I C, I B (A) Current Gain, Type I SHBT InP/InGaAs : Results DC Measurements 16 14 12 1 8 6 4 2 I B From to 7 µa 5 µa/step A E =.2 x 2.5 µm 2-2 1 2 3 4 V CE (V).1 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 I B (A) A E =.2 x 2.5 µm 2 I C (A) V CB = V Beta 1E-9..2.4.6.8 1. V BE 12 1 8 6 4 2 BV CEO = 2.5 V @ J E = 1 ka/cm 2 β = 12 ρ CBase 2 Ω µm 2, Base ρ sheet = 75Ω/ ρ CEmit. 2 Ω µm 2

Gain (db) (GHz) - Single Pole Extraction Output Power (dbm), Power Gain (db) 35 3 25 2 15 1 5 Results V CE = 1.5 V I C = 5.8 ma/µm 2 A E =.2 x 2.5 µm 2 H21 2 U F T F T = 35 GHz F MAX = 63 GHz 1 8 1 9 1 1 1 11 1 12 Type I SHBT InP/InGaAs : RF & Power Measurements at 94 GHz Single Pole Extraction Frequency (Hz) 8 6 4 2 FT 12 1 8 6 4 2-2 -4-6 Output Power Power Gain PAE A E =.2 x 9.5 µm 2-15 -1-5 5 Absorbed Power (dbm) 35 3 25 2 15 1 5 PAE (%) F T = 35 GHz F MAX = 63 GHz IEEE EDL Under review I C = 8 ma/µm 2, V CE = 2 V, I B = 2.5 ma P OUT = 12.1 dbm (8.6 mw/µm 2 ) P.A.E = 31 %, Power Gain = 6.3 db

F MAX (GHz HBT : State of the Art 1 8 6 4 2 Teledyne DHBT UCSB DHBT UIUC SHBT UIUC DHBT ETHZ DHBT GaAsSb HRL DHBT Northrop DHBT NTT DHBT IEMN SHBT IEMN DHBT GaAsSb 2 4 6 8 1 F T (GHz) 17

(W/Km) DHBT Thermal Management : Thermal Issues 1 at 3 K 8 InP Si (168) AlN (2) 6 4 InAs GaAs 2 InGaAs InAlAsInGaP SiN SiO polyimid Material High Dissipated Power High Junction Temperature Degraded Material Properties Poor Device Reliability and Low Median-Time-To-Failure (MTTF)

Bonding layer Inverse active structure Original Substrate Bonding layer Host substrate DHBT Thermal Management : Active Layer Transfer Principle Original substrate Inverse active structure Bonding layer Host substrate Pressure + Temperature Inverse active structure Bonding layer Host substrate E contact Emitter Thermocompression Au Au Au (host Sub) / Au ( active sub) Base Collector Bonding layer Host substrate FINAL STRUCTURE

Bonding layer Inverse active structure Original Substrate Bonding layer Host substrate DHBT Thermal Management : Active Layer Transfer Principle FINAL STRUCTURE Original substrate Inverse active structure Pressure + Temperature Thickness (Å) Material Doping (cm -3 ) Description Bonding layer 1 InP Host substrate 5 1 16 : Si Collector 2 GaAs.51 Sb.49 4 1 19 : C Base 2 Al x In 1-x P 5 1 17 : Si Emitter 1 InP 3 1 19 : Si Emitter Con. 2 In,53 Ga,47 As 3 1 19 : Si Emit. Cap. E contact Substrate Emitter Base Collector Bonding layer Host substrate Inverse active structure Bonding layer Host substrate Thermocompression Au Au Au (host Sub) / Au ( active sub) Semi-insulating InP

DHBT Thermal Management : Host Substrate Ceramic Substrate of AlN Very High Roughness Non Effective Bonding Perfect Bonding On Si Substrate

DHBT Thermal Management : Active Layer Transfer Process HR Si Mo/Pt/Au : 25/4/25 Å Active Layer Ti/Au : 25/25 HR Silicon Host Substrate Low R TH : 1625 K/W Own InP Substrate R TH : 4452 K/W 65% Lower for Reported Device A. Thiam, et al. IEEE EDL, Vol. 35, no. 1, 214.

Bande interdite (ev) " 6.1 Å " Antimonide HBT : Ideal Structure? ΔEc =.7 ev 2,5 AlP.86 ev.35 ev.35 ev 2 1,5 1 GaP AlAs GaAs InP AlInAsSb AlSb ΔEv =.2 ev ΔEc =.57 ev 1.17 ev.44 ev.44 ev ΔEv =.16 ev Al.5 In.5 Sb,5 5,4 5,5 5,6 5,7 5,8 5,9 6 6,1 6,2 6,3 6,4 6,5 InAs Paramètre de maille (Å) GaSb Ga.65 In.35 Sb InSb Ga.5 In.5 Sb 23

" 6.1 Å" Antimonide HBT Type-II Heterostruture AlInAsSb/GaInSb/AlInAsSb Emitter n Base p " 6.1 Å " Antimonide HBT : AlInAsSb/GaInSb/AlInAsSb Collector n Thickness (Å) Material Doping (cm -3 ) Description 4 Ga,65 In,35 Sb 2 1 18 : Te Emitter Cap 4 AlInAsSb 1 1 17 : Te Emitter 4 1 19 : C 4 Ga,51 In,49 Sb Base 7 Ω/o E c 15 AlInAsSb 1 1 19 : Si Collector 3 Ga,5 In,5 Sb 3 1 19 : Si Cont. Sub-Coll. 2 Metamorphic Buffer Substrate Semi-insulating InP E V High Electron Mobility High Hole Mobility Breakdown Voltage 24

metal metal oxydes " Ex Nihilo " Realization 6.1 Å HBT : semiconductor semiconductor Tunnel Effect Φ B Emitter Definition : AlInSb/GaInSb Wet Etching Selectivity Selectivity AlInSb/GaInSb HCl based solution S = 1 Selectivity GaInSb/AlInSb C 4 H 6 O 6 Tartric acid solution S = 12 Ohmic Contact : Doping Level Surface Treatment UV Ozone, NH 4 S, Ion Cleaning Interface Metal Mo, Ti, Pd

" Ex Nihilo " Realization 6.1 Å HBT : Al,33 In,67 As,31 Sb,69 /GaInSb/Al,33 In,67 As,31 Sb,69 TBH Emitter Width = 1 µm, Emitter Long = 5 µm After Air-Bridge Fabrication

I B, I C (A) Current Gain, Gain (db) I C (ma) 25 2 15 1 5 1-1 1-2 1-3 1-4 1-5 1-6 1-7 A E = 2x15 m 2..2.4.6.8 1. 1.2 1.4 I B (A) I C (A) Beta AlInAsSb/GaInSb/AlInAsSb DHBT : DC and RF Performances V CE (V) A E = 2 x 15 µm 2 V CB = V I B From to 1 ma 1 µa/step..1.2.3.4.5.6.7 V BE (V) 4 3 2 1 25 2 15 1 5 V CE = 1.1 V I C = 2.65 ma/µm 2 H 21 2 F T = 52 GHz U F MAX = 49 GHz 1 9 1 1 1 11 Frequency (Hz) A E = 1 x 15 µm 2 Current Density > 2 ka/cm 2 Current Gain = 2 RF Performances ~ 5 GHz E. Mairiaux, et al. IEEE EDL, Vol. 31, no. 4, 21.

I B, I C (A) Current Gain, Gain (db) I C (ma) 25 2 15 1 5 1-1 1-2 1-3 1-4 1-5 1-6 1-7 A E = 2x15 m 2..2.4.6.8 1. 1.2 1.4 I B (A) I C (A) Beta AlInAsSb/GaInSb/AlInAsSb DHBT : DC and RF Performances V CE (V) A E = 2 x 15 µm 2 V CB = V I B From to 1 ma 1 µa/step..1.2.3.4.5.6.7 V BE (V) 4 3 2 1 25 2 15 1 5 V CE = 1.1 V I C = 2.65 ma/µm 2 H 21 2 F T = 52 GHz U F MAX = 49 GHz 1 9 1 1 1 11 Frequency (Hz) A E = 1 x 15 µm 2 First World High frequency Demonstration F T = 52 GHz F MAX = 49 GHz Current Density > 2 ka/cm 2 Current Gain = 2 RF Performances ~ 5 GHz E. Mairiaux, et al. IEEE EDL, Vol. 31, no. 4, 21.

Conclusion GaAsSb/InP : High Output Level at 94 GHz GaAsSb/InP : High Output Level at 94 GHz Drastic Reduction of the Thermal Resistance when Active is Transferred on HR-Si Substrate 6.1 Å : First RF Demonstration at IEMN