Chapter 2 BASIC LINEAR AMPLIFIER CIRCUITS Name: Date

Similar documents
Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date

Chapter 4 CONVERTING VOLTAGE AND CURRENT Name: Date: Chapter 4 AN INTRODUCTION TO THE EXPERIMENTS

Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

EE 3305 Lab I Revised July 18, 2003

Lesson number one. Operational Amplifier Basics

ELEC207 LINEAR INTEGRATED CIRCUITS

EE431 Lab 1 Operational Amplifiers

Laboratory Project 1: Design of a Myogram Circuit

Operational Amplifiers

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain.

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

L02 Operational Amplifiers Applications 1

Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits

Operational Amplifiers

EE 210 Lab Exercise #5: OP-AMPS I

ECEN Network Analysis Section 3. Laboratory Manual

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

Electronics and Instrumentation Name ENGR-4220 Spring 1999 Section Experiment 4 Introduction to Operational Amplifiers

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

LAB 5 OPERATIONAL AMPLIFIERS

Operational amplifiers

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

How to Wire an Inverting Amplifier Circuit

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

An amplifier increases the power (amplitude) of an

using dc inputs. You will verify circuit operation with a multimeter.

Laboratory 8 Operational Amplifiers and Analog Computers

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

A Digital Multimeter Using the ADD3501

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab.

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

LINEAR APPLICATIONS OF OPERATIONAL AMPLIFIERS

An electronic unit that behaves like a voltagecontrolled

Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 24

Chapter 9: Operational Amplifiers

Exercise 2: Temperature Measurement

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

Operational Amplifiers. Boylestad Chapter 10

ENSC 220 Lab #2: Op Amps Vers 1.2 Oct. 20, 2005: Due Oct. 24, 2004

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

Electronics - PHYS 2371/2 TODAY

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

Emitter Coupled Differential Amplifier

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

Common Reference Example

+ power. V out. - power +12 V -12 V +12 V -12 V

WAVEFORM GENERATOR CIRCUITS USING OPERATIONAL AMPLIFIERS

An input resistor suppresses noise and stray pickup developed across the high input impedance of the op amp.

Lecture 11. Operational Amplifier (opamp)

Introduction to Op Amps By Russell Anderson, Burr-Brown Corp

Chapter 9: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

Section3 Chapter 2: Operational Amplifiers

Chapter 10: Operational Amplifiers

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

PHYS 1112L - Introductory Physics Laboratory II

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

EMG Electrodes. Fig. 1. System for measuring an electromyogram.

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

Basic Information of Operational Amplifiers

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Operational Amplifiers

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

Operation and Maintenance Manual

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

Physics 303 Fall Module 4: The Operational Amplifier

Infrared Communications Lab

Operational Amplifiers (Op Amps)

A Simplified Test Set for Op Amp Characterization

EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits

Analog Electronic Circuits Code: EE-305-F

United States Patent (19) 11) 4,163,947

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

Lab 10: Oscillators (version 1.1)

MAS.836 HOW TO BIAS AN OP-AMP

Electronic Simulation Software for Teaching and Learning

9 Feedback and Control

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 7. RC Oscillator. Guide. The Waveform Generator Lab Guide

An active filter offers the following advantages over a passive filter:

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

DIGITAL TO ANALOG CONVERTERS. 1. Digital to Analog Converter using Binary- Weighted Resistors

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Operational Amplifiers

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Practical Testing Techniques For Modern Control Loops

v 0 = A (v + - v - ) (1)

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

CHEM 411L Instrumental Analysis Laboratory Revision 2.0. Amplifiers

ES250: Electrical Science. HW6: The Operational Amplifier

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

Instructions for the final examination:

Transcription:

AN INTRODUCTION TO THE EXPERIMENTS The following experiments are designed to demonstrate the design and operation of the fundamental linear amplifier circuits whose out put signal is directly proportional to the input. The experiments that you will perform can be summarized as fol lows: Experiment No. 1. Demonstrates the design and operation of a voltage follower. 2. Demonstrates the design and operation of a non-inverting amplifier. 3. Demonstrates the design and operation of an inverting amplifier. 4. Demonstrates the design and operation of a 2-input summing amplifier. 5. Demonstrates the design and operation of a difference amplifier. EXPERIMENT NO. 1 The purpose of this experiment is to demonstrate the operation of voltage follower, using a type 741 op-amp. Pin Configuration of 741 Op-Amp (Fig. 2-19) Discussion Schematic Diagram of Circuit (Fig. 2-20) The voltage follower is a special case of the non-inverting amplifier where all of the output voltage is fed back to the inverting input by a straight connection, as shown in figure 2-19. The straight feedback connection produces a voltage gain of approximately 1, so the closed loop gain of the voltage follower is Closed Loop Gain: The most important features of the voltage-follower configuration are its very high input resistance and its very low output resistance. These features make it a nearly ideal buffer amplifier for interfacing high-resistance source and low-resistance loads.

Voltage gain: Set your oscilloscope for the following settings: Channels 1 & 2: 0.5 volt/division Time base: 1 msec/ division AC coupling First check your wired circuit, making sure that it is correct. Don t forget the +V and V power supply connections, as they are usually omitted from schematic diagrams! Pin 7 goes to ±V and pin 4 goes to -V. Apply power to the breadboard and observe the input and output traces on the screen of the scope. NOTE: Since we will be concerned with, both the input and output signals, we will adopt the convention that the input signal is Channel 1, and the output signal is Channel 2. When view ing both signals simultaneously on a dual-trace oscilloscope, position the input signal so that it is above the output signal. Adjust the output of the generator so that the voltage is 1.5 volts peak-to-peak (3 vertical divisions), and the generator frequency so that there are at least 4 complete cycles on the oscilloscopes screen (at least 400 Hz). What is the difference between the input and output signals? There is no difference between the two signals, as they are in phase. The output voltage is also 1.5 volts peak-to-peak. Conse quently, the voltage gain of this voltage follower is 1.0, which is al ways the case. Verify that the voltage gain of a voltage follower is always equal to by randomly varying the input voltage and measuring the corre sponding output voltage. EXPERIMENT NO. 2 The purpose of this experiment is to demonstrate the operation of a non-inverting amplifier, using a type 741 op-amp.

Discussion Schematic Diagram of Circuit (Fig. 2-21) An Op-amp connected in a closed-loop configuration in which the input signal is applied to the non-inverting input (+) is a non-inverting amplifier, as shown in Figure 6-14. A portion of the output is applied back to the inverting input (-) through the feedback circuit. This constitutes negative feedback. Voltage gain = Set the oscilloscope for the following settings: Channels 1 & 2: 0.5 volt/division Time base: 1 msec/ division AC coupling Apply power to the breadboard and adjust the generator s output voltage at 1 volt peakto-peak and the frequency at 400 Hz (4 com plete cycles). With the amplifier s input signal positioned above the output signal on the oscilloscope s screen, what is the difference be tween the two signals? The only difference between the two signals is that the output signal is larger than the input signal, as shown in Fig. 2-22. Both signals are said to be in phase, since the output signal goes positive exactly when the input does. What is the peak-to-peak output voltage? volts What then is the voltage gain? How does this compare with the equation given in the section?

At this point have the instructor observe a working circuit. Instructor signature By the equation Voltage gain = 1 + RB/RA = 1 + 10k/10k = 2.0 Keeping the input level constant at 1 volt peak-to-peak change resistor RB, and complete the following table. Do your experimental results agree with the design equation? RB 22Kohm 33Kohm 47Kohm 82Kohm Measured V, (peak-topeak) Voltage Gain EXPERIMENT NO. 3 The purpose of this experiment is to demonstrate the operation of the inverting amplifier, using the type 741 op-amp. Discussion Fig. 2-23. An op-amp connected in a closed-loop configuration in which the input signal is applied through a series resistor to the inverting input (-) is an inverting amplifier, as shown in Fig. 2-23. The output is fed back through Rf to the inverting input. The non-inverting input is grounded.

At this point, the ideal op-amp parameters mentioned earlier are useful in simplifying the analysis of this circuit. In particular, the concept of infinite input resistance is of great value. An infinite input resistance implies that there is no current in or out of the inverting input. If there is no current through the input resistance, then there must be no voltage drop between the inverting and the non-inverting inputs. This means that the voltage at the inverting input (-) is zero because the non-inverting input(+) is grounded. This zero voltage at the inverting input terminal is referred to as virtual ground. This condition is illustrated in Fig. 2-23. Voltage gain = VO/Vin = -RB/RA Set the oscilloscope for the following settings: Channels 1 & 2: 0.5 volt/division Time base: 1 msec/ division AC coupling Apply power to the breadboard and adjust the generator s output voltage at 1 volt peakto-peak and the frequency so that there are about 5 complete cycles for the 10 horizontal divisions (500 Hz). The output signal is of oppositive form, or is inverted, compared with the input signal. The output is said to be inverted, or 180o out-of-phase with the input, since the positive peak of the output signal occurs when the input s peak is negative. What is the peak-to-peak output voltage? Volts At this point have the instructor observe a working circuit. Instructor signature The peak-to-peak output voltage should be 1 volt, which is the same as the input. Consequently, the voltage gain is --1.0, where the minus sign indicates that the output is inverted with respect to the input. Also, by the equation: voltage gain = - RB/RA = -10k/10k = -1.0

Keeping the input level constant at 1 volt peak-to-peak, change resistor R B, and complete the following table. Do your experimental results agree with the design equation? RB 22Kohm 33Kohm 47Kohm 82Kohm Measured V, (peak-topeak) Voltage Gain EXPERIMENT NO. 4 The purpose of this experiment is to demonstrate the operation of a 2-input summing amplifier, Using a type 741 op-amp: Schematic Diagram of Circuit (Fig. 2-25) Output voltage: [ ] Set the oscilloscope for the following settings: Channel 1: 1 volt/division Time base: 1 msec/ division AC coupling

Apply power to the breadboard and adjust the peak-to-peak out put voltage of the function generator (V1) at 1 Volt and adjust the frequency so that there are about 3 full cycles on the scope s screen (300 Hz). Measure the output voltage at the output of the 1st op-amp (V2). What is it? volts. You should have measured a peak-to-peak voltage of 1 volt, since this portion of the circuit is just a voltage follower whose operation was described in Experiment No. 1. Measure the voltage at the output of the 2nd op-amp (V0). What is it? volts. At this point have the instructor observe a working circuit. Instructor signature Why? This 2nd amplifier is the summing amplifier, adding the two input voltages V1 (1 volt) and V2 (also 1 volt). This can be verified by the equation in the section so that: [ ] = - 2.0 volts The negative sign occurs because we are using the op-amp as an inverting amplifier, so that the output is inverted with respect to the sum of the two inputs which are in phase If we are able to simultaneously observe V1, V2, and V0 on the oscilloscope s screen. Step 5 So far we have only presented the simple case of adding two equal voltages. To demonstrate that the equation in and the opera tion of the summing amplifier still hold for unequal input voltages, disconnect the power from the breadboard and rewire only the 1st op-amp as a non-inverting amplifier, as shown in Fig. 2-27. The 2nd opamp remains connected as before. Step 6 Fig. 2-27 Apply power again to the breadboard. What is V2 now (i.e., the output voltage of the new circuit for the 1st op-amp)? Is it what you expected? Step 7 Now measure V0 (the output voltage of the 2nd op-amp). What is it? volts.

Step 8 Again, disconnect the power supply and rewire the 1st op-amp as a unity-gain inverting amplifier, as shown in Fig. 2-29. Fig. 2-29 Step 9 Apply power to the breadboard and now measure V0. What do you get? volts. You should measure no output voltage! Why? You would probably think that the output voltage (V0) would be 2 volts, since V1 and V2 are now each 1 volt. I have played a little trick on you. In Step 8 we were using a unitygain amplifier, so that the output voltage (V2) was inverted with respect to its input, V1. When these two equal, but out-of-phase voltages were added, they cancelled each other, resulting in a net output of zero. This can be seen by looking at V1, V2, and V0 simultaneously. When V1 goes positive, V2 goes negative by an equal amount. When V1 and V2 are added, the net result is zero. The same analysis applies for when V1 goes negative. In Steps 1 through 7, the two input volt ages were always in phase.

EXPERIMENT NO. 5 The purpose of this experiment is to demonstrate the design and operation of an opamp difference amplifier, using a type 741 op-amp. Vo = Schematic Diagram of Circuit (Fig. 2-31) When: R1 = R3, R2 = R4 Wire the circuit shown in the schematic diagram and then apply power to the breadboard. First connect the non-inverting input resistor (R3) to point 1 and the inverting resistor (R1) to point 2 on the resistor divider string. With your voltmeter, measure the dc input voltages V1 (VB ) and V2 (VA ), recording your results below: V1 = VB = volts V2 = VA = volts VB - VA = volts Now with your voltmeter, measure the output voltage Vo, and re cord your result below: Vo= volts Step 5 Now reverse the input connections so that R1 is connected to point 1 and R3 is connected to point 2. Repeat Steps 3 and 4, recording your results below: V1 = VA = volts V2 = VB = volts VB VA = volts VO = volts