L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

Similar documents
PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Life Science Chapter 2 Study Guide

Where should the fisherman aim? The fish is not moving.

Refraction, Lenses, and Prisms

Light sources can be natural or artificial (man-made)

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles

The eye & corrective lenses

Physics 11. Unit 8 Geometric Optics Part 2

Downloaded from

Unit 2: Optics Part 2

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

30 Lenses. Lenses change the paths of light.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Physics 1202: Lecture 19 Today s Agenda

Unit 3: Energy On the Move


Physics Learning Guide Name:

The Hyman Eye and the Colourful World

King Saud University College of Science Physics & Astronomy Dept.

Chapter 13- Refraction and Lenses

Unit 3: Chapter 6. Refraction

Lenses. Images. Difference between Real and Virtual Images

OPTICS DIVISION B. School/#: Names:

Person s Optics Test KEY SSSS

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Chapter: Sound and Light

sclera pupil What happens to light that enters the eye?

19. Ray Optics. S. G. Rajeev. April 2, 2009

Chapter 25: Applied Optics. PHY2054: Chapter 25

DELHI PUBLIC SCHOOL JALANDHAR. (a) Assignment will be discussed and solved in the Class. ( In Physics Notebook)

3. Study the diagram given below and answer the questions that follow it:

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

General Physics II. Optical Instruments

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Ch. 18 Notes 3/28/16

CHAPTER 18 REFRACTION & LENSES

Name. Light Chapter Summary Cont d. Refraction

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.


Science 8 Unit 2 Pack:

Human Eye and Colourful World Science. Intext Exercise 1

Chapter 34: Geometrical Optics (Part 2)

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Light and Applications of Optics

UNIT 12 LIGHT and OPTICS

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Chapter 25. Optical Instruments

GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS

Refraction of Light. Refraction of Light

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

The Optics of Mirrors

Optics: Lenses & Mirrors

Optics looks at the properties and behaviour of light!

Optics Review (Chapters 11, 12, 13)

Downloaded from

An object that refracts light. A from of energy that travels in waves and can be seen when it interacts with matter

Chapter 36. Image Formation

Refraction and Lenses

EDULABZ INTERNATIONAL. Light ASSIGNMENT

HUMAN EYE AND COLOURFUL WORLD

Chapter 28. Reflection and Refraction

Optics Practice. Version #: 0. Name: Date: 07/01/2010

3. Butter paper is an example for object. (A) a transparent (B) a translucent (C) an opaque (D) a luminous

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Refraction Phenomena Apparent Depth & Volume

Light enables organisms

Chapter 36. Image Formation

Chapter 34 Geometric Optics

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

Use these words to complete the sentences about light: absorb different diffuse focus prism refraction same slower specula transmit

Physics Test Review Reflection/Refraction/Diffraction & Lenses Session: Name:

1. The convex lens will magnify the print, provided the object is not placed beyond 2F, While the concave lens will shrink the print image.

Division C Optics KEY Captains Exchange

BASANT S PHYSICS STUDY MATERIAL SUB- HUMAN EYE AND COLOURFUL WORLD =================================================== ============

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Reflection and Refraction of Light

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

Image Formation by Lenses

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Note on Posted Slides. Fermat s Principle of Least Time. History of Light. Law of Reflection The angle of reflection equals the angle of incidence.

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

Unit 3 - Foundations of Waves

ID: A. Optics Review Package Answer Section TRUE/FALSE

LECTURE 17 MIRRORS AND THIN LENS EQUATION

Transcription:

L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors n The index of refraction (n) depends of the color (wavelength) of the light color Red orange yellow green blue violet Wavelength (nm) 660 610 580 550 470 410 n 1.520 1.522 1.523 1.526 1.531 1.538 1 nm = 0.000000001 m Different colors are refracted (bent) by different amounts The rainbow Rainbows are caused by dispersion of sunlight from water droplets which act as tiny prisms White light red contains all wavelengths (colors) Glass prism violet Why is it a rain BOW? The drops must be At just the right Angle (42 degrees) Between your eyes And the sun to see The rainbow. This Angle is maintained Along the arc of a Circle. Atmospheric scattering Why is the sky blue and sunsets red? It is due to the way that sunlight is scattered by the atmosphere (N 2 and O 2 ) Scattering atoms absorb light energy and re-emit it but not at the same wavelength Sunlight contains a full range of wavelengths in the visible region 1

Atmospheric scattering: blue sky Short wavelengths are scattered more than long wavelengths Blue light (short) is scattered 10 times more than red light The light that we see in the sky when not looking directly at the sun is scattered blue light Atmospheric scattering: red sunset At sunset, the sun is low on the horizon When looking at the sun it appears red because much of the blue light is scattered out leaving only the red Mirrors reflection Light does not pass thru metals it is reflected at the surface Two types of reflection: diffuse and specular The law of reflection The angle of reflection = angle of incidence Incident ray, reflected ray and normal all lie in the same plane Incident ray i normal r reflected ray Diffuse reflection: uzzy or no image specular reflection: Sharp image mirror image formation by plane mirrors The rays appear to originate from the image behind the mirror. Of course, there is no light behind the mirror this is called a virtual image You only need a mirror half as tall as you are to see your whole self Homer s image Homer Mirrors appear to make rooms look larger. 2

The image of your right hand is your left hand Spherical or curved mirrors Concave mirror ocus AMBULANCE is painted backward so that you see it correctly in your real-view mirror parallel light rays are focused to one point convex mirror Dish antennas signal from satellite focus parallel rays diverge from a focus behind the mirror detector at the focal point of the dish Magnifying mirrors Convex mirrors: wide angle view Homer Homer s image Object Image when something placed within the focus of a concave mirror, an enlarged, upright image is formed. this principle is used in a shaving or makeup mirror A convex lens provides a wide angle view. Since it sees more, the images are reduced in size. Passenger side mirrors are often of this type with the warning: objects appear further than they actually are". Because they appear smaller they look further away. 3

Image formation with lenses converging lens converging lens (positive lens) diverging lens (negative lens) the human eye correcting for nearsightedness correcting for farsightedness optical instruments lenses are relatively simple optical devices the principle behind the operation of a lens is refraction the bending of light as it passes from air into glass (or plastic) focal point a converging lens focuses parallel rays to a point called the focal point. a thicker lens has a shorter focal length Diverging lens Image formation by a converging lens image object 2 A diverging lens causes parallel rays to diverge as if they came from a focal point If the object is located at a distance ofat least 2 from the lens, the image is inverted and smaller than the object. The image is called a REAL image since light rays actually converge at the image location A converging lens is used to focus rays from the sun to a point converging lens is used in a camera to focus light onto the film since the sun is very far from the lens, the rays are nearly parallel when you focus a camera, you adjust the distance between the lens and the film depending on the object location. 4

Image formation by a diverging lens a magnifying lens Object image The diverging lens produces an image that is upright and diminished in size. It is a VIRTUAL image, since light rays do not actually pass through the image point Object virtual image By placing the lens close to the object we get a magnified virtual image. Sight the human eye Physics of the human eye Corrections for abnormal vision Nearsightedness arsightedness light enters through the cornea the iris controls the amount of light that gets in, a muscle can close it or open it, the iris is the colored part the lens is filled with a jelly-like substance; the ciliary muscle can change the shape of the lens and thus change its focal length The Eye by changing the focal length, (accommodation) the lens is able to focus light onto the retina for objects located at various distances the physics of the human eye The relaxed eye can easily focus on distant objects. To focus on close objects the lens is squeezed to shorten it s focal length, making it possible to converge the rays onto the retina. The near point is the distance at which the closest object can be seen clearly. It recedes with age. When a nearsighted person views a distant object, the lens cannot relax enough to focus at the retina. The rays converge too quickly. The remedy is to place a diverging lens in front of the eye to first diverge the 5

Pencil in lucite block the top half of the pencil is glued exactly at the position where the image of the bottom half is formed in the block due to refraction at the front surface the bottom of the pencil (its image ) appears closer to the front surface of the block the bottom half of the pencil cannot be seen from the sides of the block because any ray from the bottom of the pencil suffers total internal reflection on the sides of the block. When a farsighted person tries to focus on a close object the lens cannot be squeezed enough to focus on the retina. The focus W point is behind the retina. The remedy is to place e a converging h lens in front of the eye to converge the rays before they enter the eye. top view 6